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ABSTRACT

In unemployment assistance programs, the government profiles recipients according to their

traits with the twofold goal of facilitating their reemployment and eliminating overpayments. To

this purpose, a profiling program establishes (i) which recipients to profile, (ii) when and (iii) how

accurately, and (iv) the transfers to be paid after it. This paper provides criteria to rank existing

profiling programs, as well as an estimate of the welfare gains from the adoption of the optimal

one. Two types of programs are possible at the optimum. The first type are generous programs

in which high costs of search-effort compensation make it too costly to delegate the job search

to recipients, who thus receive full consumption insurance. The second type, instead, are less

generous programs in which recipients who are profiled as highly employable are incentivized to

search with lower transfers to reduce effort-compensation costs. Moreover, if poorly employable

recipients are better compensated for search effort than left at rest, a fraction of them may be

persuaded via profiling to revise their reemployment expectations upward and search at lower

incentive costs.
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1 Introduction

A renewed interest in optimal design of active labor-market policies (ALMPs) started in 2007

amid the financial crisis. Nowadays, following the outbreak of the Covid-19 pandemic, welfare

support to the poor and the jobless is at the core of the political agenda of many governments

worldwide. Nonetheless, the unprecedented increase in unemployment rates and the contempo-

raneous economic recession have led to a disproportion between public resources and the need for

social security, which ultimately results in a push for optimizing public spending.1 The trade-off

between income support, incentive provision to job search and cost minimization for the public

provider has led to policies tailored to recipients’ characteristics. As a consequence, tracing a

profile of any jobseeker who requests public financial support constitutes an aspect of first-order

importance for the design of an effective welfare program. Profiling of welfare claimants is present

in most OECD countries2 and is usually employed as a tool to support and improve the design

of existing ALMPs.

In the US, Worker Profiling and Reemployment Services (WPRS) and Reemployment and

Eligibility Assessment (REA)3 are two Federal-funded programs that profile welfare claimants.

All workers who request access to public welfare support are asked to report their personal

traits, such as education, past working experiences, family background, etc. This information

allows for an early assessment of reemployment expectations, based on the statistical evidence

provided by historical data on claimants’ unemployment spells. In addition, both WPRS and

REA may implement an in-depth assessment of the human capital of each claimant, in the form

of one-on-one interviews and/or skill tests, to better tailor the assistance program to their needs.

The two programs generate savings for the provider through distinct channels. First, by

improving upon the fit between workers and job-search methods. For instance, in WPRS “UI

claimants who are identified through profiling methods as likely to exhaust benefits and who are

in need of reemployment services to transition to new employment participate in reemployment

services, such as job search assistance” (US Dept. of Labor4). Second, by designing transfers

based on recipients’ needs during the unemployment spell. This holds especially for REA5, that

is devoted to “enhance the rapid reemployment of unemployed workers, identify existing and

1Public unemployment spending in the US reached $622 billions in 2021, accounting for 6.7% of the annual
Federal budget (USASpending.gov, https://www.usaspending.gov/explorer/agency).

2Some examples are given by Worker Profiling and Reemployment Services and Reemployment and Eligibil-
ity Assessment programs (US), the Suivi Mensuel Personnalisé (France), 4-Phase Model (Germany) and Work
Programme (UK).

3In 2015, REA has been replaced by the REemployment Services and Eligibility Assessment (RESEA) pro-
gram, which provides greater access to reemployment services. I will nonetheless refer to the former version of
the program, as it provides a clearer distinction between profiling and reemployment services which eases the
exposition.

4https://www.dol.gov/agencies/eta/american-job-centers/worker-profiling-remployment-services
5One of the several purposes of RESEA is to “[...] Strengthen UI program integrity” (US Dept. of Labor,

https://www.dol.gov/agencies/eta/american-job-centers/RESEA). Hence, the two versions of the program
have similar targets.
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eliminate potential overpayments, and realize cost savings for UI trust funds” (Poe-Yamagata

et al., 2011).6

Profiling is complementary to welfare policies, which instead deal with income support and

provision of search incentives and assistance. US welfare assistance is funded partly by the

Federal government and partly by single States, while the organization and design is mainly

deferred to the latter. Profiling programs thus greatly differ along many dimensions, namely

(i) who should be profiled, (ii) when and (iii) how accurately, (iv) whether profilees should be

requested to search or rest in the meantime and/or upon it, based on the new information

obtained, and (v) which payments should accompany it. All these dimensions must therefore be

taken into account in the analysis of an optimal profiling program.

The first objective of this paper is to develop a framework suitable to study the main comple-

mentarities between profiling and welfare policies. Optimal welfare provision solves the problem

of a risk-neutral public welfare provider (hereafter, ‘the government’), who needs to maximize

the welfare of a risk-averse recipient (hereafter, ‘the worker’), subject to a budget constraint

and to non-contractible job-search effort of the latter. Following Shavell and Weiss (1979) and

Hopenhayn and Nicolini (1997), the design of a welfare program can be formalized as a dynamic

principal-agent problem, where the state of the problem is composed by the current utility of

the worker/agent, implicit in the structure of future payments, and the level of her expected

reemployment skills. Keeping track of the state allows for a recursive formulation of the prob-

lem. Job search failures are themselves informative about hidden reemployment perspectives,

and cause a revision of expectations. Like in Pavoni et al. (2013), policy instruments arise as

the combination of (i) job-search recommendation to workers (‘Search’ or ‘Rest’), (ii) a transfer

scheme, made of current consumption and continuation utilities, indexed to future employment

status and profiling outcome, and (iii) technologies adopted. The technologies available to the

planner are job search assistance and profiling, and can be implemented jointly. The optimal

program arises as a sequence of policies over time.

The paper finds that reemployment expectations and the generosity of payments toward

workers are crucial determinants of optimal programs. The cost of search incentives being de-

creasing in the expected human capital, and the one of search-effort compensation being in-

creasing in the generosity of transfers, make the government save on these costs by delegating

the job-search to workers when expected human capital (resp., program’s generosity) is high

(resp., low). For this reason, the government lowers the payments to job seekers who are profiled

as highly employable, in the attempt to further ease incentive provision. Therefore, a REA-like

program contemplating this form of ‘punishments’ should optimally be adopted jointly with

direct job search. Furthermore, profiling possibly does not fully detect employability at the op-

6The report was commissioned by the Employment and Training Administration of the US Dept. of Labor.
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timum. For low program’s generosity and absent search incentives, the government would find it

optimal to require also poorly employable workers to search. If the additional cost of search in-

centives is not too large, a fraction of poorly employable workers may be persuaded of being more

employable than expected and requested to search afterwards. The paper also states sufficient

conditions on workers’ utility function that guarantee that the number of poorly employable

workers requested to search declines in the level of generosity. On the one hand, indeed, search-

effort compensation becomes more expensive and the gains from persuading poorly employable

workers shrink accordingly. On the other hand, instead, the assumption on workers’ utility func-

tion causes the decline of search-incentive costs in response to an increase of expectations to be

more sizable when the program is more generous. These two forces are jointly conducive to a

more accurate profiling when programs are more generous.

The second objective of the paper is to provide a benchmark to evaluate existing programs. To

this aim, an upper bound of returns is estimated by solving for the optimal program, conditional

on reemployment expectations of each worker and the implicit generosity of transfers envisaged

by the government’s welfare policies. Performance assessments about WPRS and REA conducted

in the past focus on specific margins and targets. The advantage and main contribution of this

paper’s approach, instead, lies in the absence of any arbitrary assumption, neither about the

margins to focus on, nor about the design of the program (sequence of policies and transfers,

timing and accuracy of profiling, job-search methods, etc.).

The rest of the paper is organized as follows. Section 2 contains the literature review. Section

3 presents the economic environment. Section 4 describes the welfare policies. Section 5 solves

for the optimal program when worker profiling is performance-based. Section 6 solves for the

optimal program when worker profiling is based on a statistical assessment. Section 7 conducts

a quantitative analysis on REA program in the US. Section 8 extends the analysis to the case

of private worker search. Section 9 concludes.

2 Literature Review

The main contribution of this paper is the development of a framework suitable to study worker

profiling within a welfare program toward the jobless. The paper provides an analysis of the

gains and losses of profiling, in conjunction with others labor-market policies, when workers’

human capital is not ex-ante observable.

Attempts have been made in the past to estimate returns of profiling programs. Sullivan et

al. (2007) and Poe-Yamagata et al. (2011) are examples of such attempts. The first paper ranks

WPRS programs in US States according to the occurrence of type-I error (i.e., the probability

that a highly employable worker is profiled as lowly so). My paper finds a rationale for such a
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choice. Indeed, optimal information design always signals low employability with full precision,

but noisily detects high employability (i.e., positive probability of type-II error) whenever a share

of poorly employable workers is persuaded to be highly so. In the second paper, instead, authors

conduct a field study on REA initiative in Florida, Idaho, Nevada and Illinois, and evaluate it

over multiple dimensions, such as duration and total amount of unemployment benefits received,

likelihood of reemployment and quarterly wage amounts received. In particular, the authors

measure a positive impact of REA on public spending in three out of four States.7 Their and

this paper’s estimates of cost savings have the same order of magnitude of millions of US Dollars

(see Section 7.3).

The existence of an agency problem in the contractual relationship between the welfare

provider and the recipients has long been acknowledged by the literature. The provider has the

possibility to tackle it either by providing recipients with incentives (Atkenson and Lucas, 1995;

Wang and Williamson, 1996; Hopenhayn and Nicolini, 1997; Chetty, 2008; Shimer and Werning,

2008), by monitoring them (Pavoni and Violante, 2007; Setty, 2019), or else, by conducting

the search on their behalf (Pavoni et al., 2013; 2016). In all cases, the job search produces an

extra cost, which possibly outweighs the expected gain from re-employment. For this reason

both active and passive policies coexist in a welfare program and only workers with better job

opportunities are referred to the active ones. When job opportunities are allowed to deteriorate

during the unemployment spell, workers are reassigned to different policies. Likewise, in this

paper any transition to a different policy follows the deterioration in expected human capital.

Yet, such a deterioration stems from a learning process which lead agents to revise their initial

expectations and does not involve any depreciation of physical human capital. Gonzalez and

Shi (2010) study unemployment-to-job transitions in a context where workers are heterogeneous

in (unobservable) skills and get discouraged by long-lasting unemployment spells. Permanence

in unemployment makes them more inclined to accept lower wage proposals. Therefore, the

reemployment equilibrium wage is increasing in the perceived probability of being high-skilled.

Similarly, in my framework the duration of unemployment spells has a discouragement effect on

job-seekers. However, the need of larger search incentives for more discouraged workers produces

a contrasting effect on net reemployment wages.

Differently from physical depreciation, expectation revision can also follow profiling. Profiling

can thus become the mean used by the government to persuade jobless recipients to seek new

jobs by manipulating their expectations. The paper is related to the vast and growing literature

on information design initiated by Kamenica and Gentzkow (2011), that deal with the design

of an optimal signaling strategy from a principal/sender to an agent/receiver. The peculiarity

7The absence of any positive impact of REA in Illinois is attributed by the authors to the small number of
eligible participants (3,122 in 2009).
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of the present framework is the ’hybrid’ nature of the problem, which mixes the design of

information with that of an effort-incentivizing contract. Consequently, the well-known result

of Bayesian persuasion stating that the optimal signal delivers the concave closure of the pre-

signal payoff function only holds when lotteries over continuation utilities are not allowed and

the problem is genuinely one of information design. When no constraint of this type is imposed,

instead, profiling can be used to ease incentive provision also by randomizing over continuation

utilities. Boleslavsky and Kim (2021) extend the concavification result to a setting with three

players (sender, agent and receiver) and incentive provision. The sender designs a signal about a

hidden state, and determines the receiver’s prior belief by convincing the agent to exert private

effort that affects the state distribution. Rodina (2020) considers a similar setting where the

agent effort is not private. Bloedel and Segal (2018), Habibi (2020) and Zapechelnyuk (2020)

also study the tension between incentive and information provision in the Bayesian persuasion

framework applied to situations of agent’s rational inattention, agent’s time-inconsistency and

quality certification, respectively. However, to the best of my knowledge, no work has studied

the relationship between information design and incentive provision in unemployment insurance

so far.

3 Economic Environment

Players’ Interaction. A risk-neutral government (principal, it) and a risk-averse worker (agent,

she) populate the economic environment in discrete time. Each player is infinitely-lived and

discount future utility at rate β ∈ (0, 1). The worker can be employed or not, and the government

observes her employment status. In period 0, (i) the two players are uncertain about the worker’s

human capital and hold common expectations about it, (ii) the worker is unemployed, and (iii)

the government offers her a contract contingent on any possible future employment status and

new information about human capital. The contract is so designed to minimize the expected

discounted value of net transfers to the worker, conditional on delivering to her a given expected

discounted utility. For each history node, the contract specifies the technology/ies adopted by the

government (assisted-search and/or profiling), the effort recommendation to the worker (’Search’

or ’Rest’) and transfers. Uncertainty about worker’s employment status clears at the beginning

of each period.

Human Capital and Job Search. Worker’s human capital can be high (h = H), or low

(h = L). Workers with high (resp., low) human capital are labelled as high- (resp., low-)skilled.

If unemployed, the worker can either rest (a = 0) or search for a job (a = 1). In the first

case, her job-finding probability is null. In the second case, the high-skilled worker finds a job

with probability πH , while the low-skilled one with probability πL ∈ (0, πH). The job search is
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public, but non-contractible, and makes any worker incur effort cost e, with worker’s utility over

consumption c and effort a being separable and given by v(c, a) = u(c) − e · a. The first-order

derivative of u−1, 1/u′, is convex.

Market-sector production. Labor productivity is increasing in human capital (ωH > ωL). In

the economy there is one market sector only, populated by identical atomistic firms competing

à la Bertrand over job offers, and paying wages equal to labor productivity. Reemployment is

an absorbing status, since the worker faces no risk of any future lay-off.

Expectations. Any worker who applies to welfare support undergoes an early assessment. The

assessment attaches to the worker a probability µ of being high skilled (µ = Prob(h = H)), which

is henceforth referred to as expectation.8 In actual programs, welfare claimants report personal

information (social background, past working experiences, education, etc.), according to which

the welfare provider makes an initial evaluation of their human capital. The evaluation of any

claimant is based on historical data that measure the reemployment frequency of claimants

with same characteristics. Highly-educated and more experienced workers, for instance, are

statistically more likely to exit unemployment than workers with less experience and/or lower

educational attainment.

Assisted-search technology. The government can search on behalf of the worker at cost

κja. The cost includes the administrative expenses of the offices which are in charge of looking

for vacancies, create a network with prospective employers and maintain contacts with them,

circulate the worker’s CV, etc.

Profiling technology. Profiling detects human capital with some accuracy, and returns a

publicly observable outcome, at cost κwp9. Profiling can be thought of as a lottery that returns a

binary outcome -‘Pass’ (r = p) or ‘Fail’ (r = f)-, with predetermined odds. The government can

choose to profile with different levels of accuracy workers holding different expectations. This

means that the lottery odds are indexed by expectation µ and program’s generosity U

{
σ(r|h, µ, U)

}
r∈{p,f}, h∈{H,L}

4 Policies

Any policy arises as the composition of (i) recommended search effort, (ii) consumption contract,

and (iii) adopted assisted-search and/or profiling technology/ies (if any). Combinations of search

effort levels and technologies gives rise to eight (2×2×2) possible policy instruments. However,

when the assisted search technology is implemented, it would be redundant to prescribe positive

8By the law of large numbers, such a probability is unbiased, meaning that the fraction of high-skilled workers
among all workers with same expectation coincides with the expectation itself.

9The cost includes administrative expenses, as in the case of assisted search.
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search effort to the worker, which reduces to six the number of policies. If no technology is

implemented, the government can decide whether to recommend positive search effort and pay

incentives (’Unemployment Insurance’, i = UI), or not (’Social Assistance’, i = SA). If only

the assisted search technology is implemented, it gives rise to ’Job-Search Assistance’ (i = JS).

Profiling without any search gives rise to ’Assistance and Profiling’ (i = AP ), whereas ’Insurance

and Profiling’ (i = IP ) arises when the technology is adopted together with worker’s search.

Finally, ’Search-Assistance and Profiling’ (i = SP ) originates if both technologies are jointly

adopted.

No Profiling

Recommendation Assisted Search Delegated Search No Search

’Search’ x Unemployment Insurance (UI) x

’Rest’ Job-Search assistance (JS) x Social Assistance (SA)

Profiling

Recommendation Assisted Search Delegated Search No Search

’Search’ x Insurance & Profiling (IP) x

’Rest’ Search-assistance & Profiling (SP) x Assistance & Profiling (AP)

Table 1: Policy Instruments

At time t = 0, the planner offers the unemployed agent an insurance contract that minimizes

transfers and guarantees her an expected discounted utility equal to U . The planner’s problem

can be written recursively by keeping track of worker’s expected human capital and promised

utility -henceforth, a proxy for program’s generosity- along the unemployment spell. The con-

sumption contract of policy i consists of a menu of today’s consumption ci and tomorrow’s

continuation utilities U s,ri , contingent on reemployment (s = w) or not (s = u), and ‘Pass’

(r = p) or ‘Fail’ (r = f) outcome, if job search and/or profiling are conducted. Current expec-

tation µ and the program’s generosity U jointly determine the choice of the policy instrument.

The government chooses the optimal policy i(µ,U) by solving

V (µ,U) = max
i∈{SA,JS,UI,AP,SP,IP}

V i(µ,U) (1)

The planner is allowed to randomize over worker’s utility U under the constraint that the

promised utility must be delivered in expectation. To this end, the operator V is defined as

V(µ,U) = max
{U(x)}x∈[0,1]

∫ 1

0
V (µ,U(x))dx (2)

sub: U =

∫ 1

0
U(x)dx

In the following, I introduce the problem of the welfare provider in case of re-employment and
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for all six instruments during unemployment. First, I define welfare-oriented policies (SA, JS

and UI) and later the profiling ones (AP, SP and IP).

4.1 Welfare Policies

Wage Tax/Subsidy (W). In case of successful job search, the worker’s productivity is revealed.

Therefore, the market-sector value when human capital is equal to h ∈ {H,L} reads

W (h, U) = max
τ,Uw

τ + βW (h, Uw) = max
cw,Uw

ωh − cw + βW (h, Uw)

sub: U = u(cw) + βUw (PK)

Since reemployment is assumed to be an absorbing state (the separation rate between employees

and firms is assumed null), the planner is sure to raise tax/pay subsidy also in the next period.

The labor tax τ is the wedge between gross (ωh) and net wage (cw). The Promise-Keeping

(hereafter, (PK)) constraint is the recursive expression of worker’s utility. It guarantees that

utility flow from current period u(cw) and continuation utility Uw are large enough to match

current utility level U . The optimal contract prescribes constant continuation utility (Uw = U).10

Hence from (PK) one can obtain the closed-form expression for consumption cw = u−1
(
(1−β)U

)
.

The expression for labor tax/subsidy thus is

W (h, U) =
ωh − u−1

(
(1− β)U

)
1− β

Social Assistance (SA). The planner’s problem when neither job search, nor profiling is

performed reads

V SA(µ,U) = max
csa,Usa

−csa + βV(µ,U sa)

sub: U = u(csa) + βU sa (PK)

The planner transfers csa and pledges continuation utility U sa, without requiring the worker to

exert any effort. SA is a passive measure, fully devoted to income support, and does not envisage

any form of job search. Thus, there is no chance of reemployment for the worker, nor any chance

for the provider of raising a labor tax in the incoming period. Differently from the definition of

wage tax/subsidy, where reemployment is an absorbing state, the planner can freely select the

best policy instrument in the next period. However, the following holds.

10At the optimum, Uw solves

WU (h, U) = − 1

u′(cw)
= WU (h, Uw) =⇒ Uw = U
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Proposition 1 (Absorbing SA). Social Assistance is an absorbing policy and its continuation

utility equals current utility (U sa = U).

Proof. See Appendix A: Properties of SA, JS and UI. �

The proof follows the same steps as in Pavoni et al. (2016). The result implies that, once the

worker enters SA, she is never reallocated to any other policy, neither she can exit unemployment,

as no search is conducted. This result is admittedly quite extreme for policymakers, who may

find it hard to politically defend a welfare program granting life-time financial support to people

who will never have the chance of getting reemployed. Yet, the result is remarkable in that it

establishes that any passive policy should be regarded as a policy of last resort, to target only

to workers with low expected human capital. Current consumption solves (PK) with U sa = U .11

The value of SA is independent of µ and has a closed-form expression

V SA(U) = −
u−1

(
(1− β)U

)
1− β

(3)

No revision of expectations occurs during SA, as no job search is conducted. When, instead,

the search is unsuccessful, both the government and the worker downward revise their initial

expectation µ, according to the formula

µ′ :=
µ
(
1− πH

)
µ
(
1− πH

)
+ (1− µ)

(
1− πL

) ≤ µ (4)

where µ′ is the revised probability that worker’s human capital is h = H. µ′ is lower than the

initial one, with equality holding only if human capital was already known (µ ∈ {0, 1}). The

reason lies in the unbiasedness of µ, that is equal to the actual share of high-skilled workers among

those who hold that expectation. Thus, a fraction π(µ) := µπH + (1 − µ)πL of them manages

to find a new employment, which implies that the high-skilled who remained unemployed after

one period are a fraction µ(1− πH)/(1− π(µ)) of the initial group. Therefore, in case of failed

search, a higher probability is attached to realization h = L.12

11At the optimum, Usa solves

V SA
U (µ,U) = − 1

u′(csa)
= V SA(µ,Usa) =⇒ Uu = U

12If the failed attempts to exit unemployment are t, one for each period, then initial expectation µ is updated
t times according to the formula

µ(t) = µ(t−1)′ =
µ
(
1− πH

)t
µ
(
1− πH

)t
+ (1− µ)

(
1− πL

)t (5)

where the convention that µ(0) = µ is used. It is easy to see that:

• µ = 0 and µ = 1 are the only two expectations such that µ(t) = µ. When players know human capital, no
update ever occurs;

• limt→∞ µ
(t) = 0, if µ(0) < 1.
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Job-Search assistance (JS). When resorting to assisted search, the government looks for

employment on worker’s behalf, an activity that costs him κja. The value of JS reads

V JS(µ,U) = max
cjs,Uw

H ,U
w
L ,U

u
−cjs − κja + β

[
µπHW (H,UwH) + (1− µ)πLW (L,UwL ) + (1− π(µ))V(µ′, Uu)

]
sub: U = u(cjs) + β

[
µπHU

w
H + (1− µ)πLU

w
L + (1− π(µ))Uu

]
(PK)

Two are the sources of risk related to the job search. The first risk is related to its outcome (suc-

cess or failure). The second one, instead, is connected to human capital realization, conditional

on finding a new job for the worker. While the government finds it optimal to insure the agent

against the latter, due to her risk aversion (UwH = UwL ), the same holds for the former only if no

search incentive is to be paid ahead, i.e. if the worker will in no case be referred to UI during

the spell.13 In either case, then the optimal contract solves

− 1

u′(cjs)
= WU (µ,Uw) = VU (µ′, Uu)

with

W (µ,U) :=
µπH
π(µ)

W (H,U) +
(1− µ)πL
π(µ)

W (L,U)

being the expected wage tax/subsidy, conditional on reemployment.

Unemployment Insurance (UI). The planner may delegate the job search to the agent

and provide her with incentives to conduct it. Incentive provision originates from the fact that

worker’s effort is non-contractible, and boils down to adding an Incentive Compatibility con-

straint (hereafter, (IC)) to the planner’s problem.

U ≥ u(cui) + βUu (IC)

The (IC) constraint guarantees incentive compatibility of the contract against agent’s deviation

from recommended search effort. Promise Keeping in UI takes into account the effort cost e

exerted by the job-seeker agent

U = u(cui)− e+ β
[
π(µ)Uw + (1− π(µ))Uu

]
(PK)

13The proof is reported in Appendix A: Properties of SA, JS and UI.
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The problem of the planner reads

V UI(µ,U) = max
cui,Uw,Uu

−cui + β
[
π(µ)W (µ,Uw) + (1− π(µ))V(µ′, Uu)

]
sub: (PK) - (IC)

(IC) and (PK) constraints imply the following condition on the difference in continuation utilities

between successful (Uw) and failed (Uu) search

Uw − Uu ≥ e

βπ(µ)
(6)

The condition in (6) is binding at the optimum and accounts for the planner’s cost of incentive

provision. Incentive cost can be defined by the difference in costs between the cases of contractible

and non-contractible effort.14 Incentive costs are increasing in the cost of effort and decreasing

in the level of patience (β) and confidence (µ). Intuitively, it is less expensive to convince the

agent to search when she expects larger return on search and weighs more the prospective reward

ensuing from it. Condition (6) shows that search incentives have a convex hyperbolic shape in

the space of expectations. Concavity of V UI in µ follows from convexity of incentive costs and

the linearity of returns. Lemma 1 proves these two facts.

Lemma 1 (Slopes of the value functions with respect to µ and U). Every policy return

V i is concave increasing in expectations, and concave decreasing in promised utility. V UI is

supermodular (i.e, V UI
µU (µ,U) ≥ 0). And so is V JS, whenever UwJS ≥ UuJS.

Proof. See Appendix A: Properties of SA, JS and UI. �

Incentive costs depending negatively on expectations through the utility dispersion generates a

comparative advantage of UI for high-end expectations. On the contrary, convexity of 1/u′ is a

sufficient condition for the costs of incentive provision and effort compensation to be increasing

in U , and so for UI to suffer a comparative disadvantage for high-end generosities. For this

second reason, more generous programs are mainly focused on assistance, in the form of income

support and assisted search, and less on search incentives. The following proposition establishes

how policies are located over the (µ,U) space.

Proposition 2 (Welfare Policies in the (µ,U) Space). Assume V is ’locally’ supermodular,

that is, for every (µ,U), there exist εµ, εU > 0 such that

VU (µ̃, U) ≥ VU (µ,U) and Vµ(µ, Ũ) ≥ Vµ(µ,U)

14On the same lines of Pavoni and Violante (2007), one can imagine the existence of a policy which delegates job
search to workers whenever effort is contractible. If that is the case, the government will only need to compensate
for the worker’s effort. If so, the incentive cost is defined as the difference in cost of contract between UI and this
new policy.
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for every µ̃ ∈ (µ, µ+ εµ) and Ũ ∈ (U,U + εU ), and that µ′ ∈ (µ− εµ, µ) and Uui ∈ (U − εU , U).

Then,

V UI
U (µ,U) ≤ V JS

U (µ,U) ≤ V SA
U (U) = WU (µ,U) < 0 (7)

and

0 = V SA
µ (U) ≤ V JS

µ (µ,U) ≤ V UI
µ (µ,U) (8)

where the last inequality holds (at least) at the crossing point. Lastly, if the program does not

allow transition from JS to UI, then V JS
µµ (µ,U) = 0 and V JS

U (µ,U) = V SA
U (U).

Proof. See Appendix A: Properties of SA, JS and UI. �

The assumption about local supermodularity of V descends from supermodularity of each V i and

requires the marginal gain of µ to be increasing in the level of generosity (i.e., VµU (µ,U) ≥ 0).

A rise in π(µ) increases the return of the job search, no matter who between the government

and the worker conducts it. However, the assumption only holds locally. Indeed, the shape of

V is determined by two contrasting forces, within-policy supermodularity and between-policy

submodularity. While the former dominates locally, the latter has a global impact on V.

Prop. 2 can be read as follows. Fix µ and move U . Then, UI, JS and SA are optimal for low,

intermediate and high U , respectively. Now, fix U and move µ. SA, JS and UI are optimal for

low, intermediate and high µ, respectively. The marginal value of µ is increasing in the level of

search intensity, duration and effort by the worker.

(a) Constant U (exp((1− β)U) = $575) (b) Constant µ (π(µ) = 0.15)

Figure 1: Value of welfare policies.15

15The parameter values and functional forms used in this Section are: u(.) = log(.), β = 0.9, e = 0.5, κja = 6,
κwp = 1.5, ωH = 20, ωL = 3, πH = 0.27, πL = 0.14. All monetary values are divided by 100.
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Therefore, fixing generosity and spanning the space of expectations, one observes that policies

with higher (resp., lower) marginal returns are optimal for higher (reps., lower) expectations.

The upper envelope V thus displays a tendency toward between-policy convexity in the space

of µ (see Fig. 1a). Such shape of V has deep implications on the choice of optimal profiling.

Similarly, Fig. 1b plots V over U for constant µ. UI is optimal for low generosity and cost

of effort. On the other end of the spectrum, SA is first-best policy for high generosity, as no

search is conducted. The slope of JS lies in between the one of UI and SA and depends on the

downstream program in case the worker is not reemployed in the next period. The following

proposition clarifies the point.

Proposition 3 (Optimal Dynamics of Promised Utility and Benefits). Continuation

utility upon failed search is

• decreasing when UI is part of the policy sequence ahead;

• constant, otherwise.

Unemployment benefits are constant in SA and JS, and decreasing in UI.

Proof. See Appendix A: Properties of SA, JS and UI. �

Since incentive costs increase in the level of utility promised to the worker, such utility

decreases during UI. Furthermore, whenever the welfare program implements assisted search

first and worker’s search later, the planner finds it optimal to start decreasing worker’s promised

utility while the worker is still in JS. This finding sheds light on the possible policy patterns that

can arise as a function of worker’s initial expectation and program’s generosity. Fig. 2 shows

two instances of optimal policy sequences, for same initial expectation (µ0 = 0.9) and different

generosity. When generosity is higher (U0 = 28.9), the worker never enters UI and only moves

from JS to SA. Thus, no effort exertion is requested her and so she is granted both consumption

and utility insurance along the spell. Hence, she eventually exits unemployment or enters SA

with the same utility level and consumption as the entry one. When, instead, generosity is lower

(U0 = 24.7), the worker is relocated from JS to UI. For this purpose, her utility decreases over

time until she finds a job and exits unemployment.

One may ask whether a worker in UI can be referred to JS. Two contrasting forces have an

impact on the policy transition over the UI-JS frontier. First, the optimal contracts of UI and

JS prescribe a decline in promised utility for values of the (µ,U) space that are close enough

to the frontier. This produces a decrease in the difference in contract costs and makes UI more

appealing ceteris paribus. Second, the downward revision of expectations causes an increase in

the incentive cost of UI, which makes JS more appealing. The following proposition establishes
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a relationship between the concavity of V and the slope of the UI-JS frontier in the µ space that

avoid the possibility of any transition from UI to JS.

Proposition 4 (Policy Transitions). Let Û(µ) be the promised utility level that makes the

government indifferent between administering UI or JS to a worker with expectation µ, i.e.

V UI(µ, Û(µ)) ≡ V JS(µ, Û(µ))

In addition, define ηi(µ,U) as the real non-negative number such that

V i
U (µ,U) ≡ −g′((1− β)U + ηi(µ,U)), i = SA,UI, JS

where g ≡ u−1 is the inverse utility function. Assume that ηi(µ,U) is non-increasing in U for

every µ and that

β
[
Û(µ)− Û(µ′)

]
≤ ηUI(µ, Û(µ)) (9)

Then, any worker in UI either remains in UI, enters SA or exits unemployment. In particular,

the optimal program never switches from UI to JS.

Proof. See Appendix A: Properties of SA, JS and UI. �

The sufficient condition (9) establishes an upper bound on the slope of the UI-JS frontier in

the µ space. Such slope is determined by the change in the difference of contract costs between

UI and JS in response to an increase of µ and U . In particular, (i) incentive costs in UI fall in

response to any increase of µ and (ii) both incentive and effort-compensation costs in UI rise in

response to any increase in U .16 An upper bound on the slope of the frontier thus requires that

the first determinant does not have a major effect on the difference of contract costs, so that

every variation of µ only requires a small variation of U (of equal sign) to reestablish the parity

between the value of UI and JS. Condition (9) guarantees that the former effect prevails over

the latter one.

5 Performance-Based Profiling

Profiling publicly discloses worker’s human capital, up to a level of accuracy chosen by the

government. For this purpose, profiling programs implement different strategies to infer the

level of human capital of the worker. Some assign the profilee a given task and assess human

capital based on how she performs. Therefore, profiling is designed as a test with two possible

16Assumption on convexity of 1/u′ guarantees that incentive cost are positively related to promised utility.
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Figure 2: Optimal Welfare Policies in the Space of Expectation and Generosity.

outcomes, ‘Pass’ (r = p) or ‘Fail’ (r = f). Conditional on the outcome of the test, the worker is

referred to a different policy. Increasing the difficulty of the task is a way to improve the accuracy

of the test, as more low skilled people are failing it and receiving a ‘Pass’ is more indicative of

high human capital. The probability schedule brings both the worker (i.e., the profilee) and the

government (i.e., the profiler) to revise expectation µ upon observation of the public outcome r

according to the formula

µr =
µσ(r|H,µ)

µσ(r|H,µ) + (1− µ)σ(r|L, µ)

A necessary and sufficient condition for profiling to induce a change in expectations is to avoid

returning either outcome with the same probability, irrespective of underlying human capital

realization (e.g., σ(r|H,µ) 6= σ(r|L, µ)). In addition, profiling does not create any type of bias

in the aggregate, since expectations are correct on average. Which boils down to require that

the revised expectations are equal in mean to the prior (so called Martingale Property, (MP)

henceforth).

qµp + (1− q)µf = µ, µf , µp ∈ [0, 1], µf ≤ µ ≤ µp (MP)

(MP) can be interpreted as a restriction requiring profiling to be credible. Indeed, considering all

workers who share the same expectation µ, inducing any of them to revise their expectation up

to µp comes at the cost of inducing an expectation revision down to µf for someone else.17 Given

the nature of this profiling methodology, any profiled worker could pretend to be low-skilled by

17Without loss of generality, the posterior upon ‘Fail’ (µf ) is set to be lower than the posterior upon ‘Pass’
(µp).
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intentionally failing the test. It is thus necessary that the continuation utility upon ‘Pass’ is

non smaller than the continuation utility upon ‘Fail’, in which case the worker retains the same

expectation as before being profiled. Indeed, the worker who intentionally fails the test derives

no new information about her human capital. Such a requirement, labelled No Discrimination

constraint (ND, hereafter) imposes a restriction on the contract offered under either profiling

outcome. In principle, the worker’s utility of choosing the off-the-equilibrium action may be

difficult to compute, as transfers are to be evaluated with the non-revised expectation. For

instance, if the worker is requested to search right after, the consumption dispersion present in

the UI contract is weighed differently as

Uuf = u(cui)− e+β[π(µf )Uwui+ (1−π(µf ))Uuui(µ
′
f )] < u(cui)− e+β[π(µ)Uwui+ (1−π(µ))Uuui(µ

′)]

However, the following result applies.

Proposition 5 (No Type I Error). Only low-skilled workers who undergo profiling receive

‘Fail’ (i.e., µf = 0), and are referred to Social Assistance henceforth.

Proof. Any disclosure of new information via profiling is equivalent to a randomization over the

space of expectations with mean equal to initial µ. Therefore, the government finds it convenient

to implement profiling whenever it can exploit the between-policy convexity generated by the

different policy slopes as in (8). The linearity of V SA in µ causes the concave closure of V (for

constant U) to be obtained by referring failed profilees to SA with µf = 0. Intuitively, reducing

the likelihood of ‘Fail’ outcome increases the frequency of ‘Pass’ (q) more than one to one. This

fact, joint with the linearity of V SA in µ (see Fig. 1a), makes convenient to limit ‘Fail’ only to

low-skilled people (i.e., zero probability of type I error) and induces as many workers as possible

to upward revise expectations. �

Therefore, since SA is an absorbing policy and no job search is conducted ever after, the (ND)

constraint has an easy formulation.

The timing of profiling policies is as follows. In the current period, the profiled worker is paid

current transfers and possibly asked to search. In the next period, the outcome of the job search

(if any) is disclosed first, before the one of test. The timing implies that the government can not

index worker’s current (ci) and future re-employment consumption (cwi ) on the new information

derived from profiling.

Assistance-and-Profiling (AP). AP does not envisage any job search. Thus, the planner’s
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problem reads

V AP (µ,U) = max
cap,(Uu

r )r={p,f},µp
−cap − κwp + β

[
qV(µp, U

u
p ) + (1− q)V(0, Uuf )

]
sub: U = u(cap) + β

[
qUup + (1− q)Uuf

]
(PK), (MP)

U ≥ u(cap) + βUuf (ND)

The (ND) constraint can be rewritten as Uup ≥ Uuf . Absent (ND), the contract would equate the

slopes of V across the different outcomes (i.e., VU (µp, U
u
p ) = VU (0, Uuf )). By (7), this would

boil down to set

Uuf ≥ Uup (10)

Intuitively, if the government expects to incur an extra cost for incentive provision later during

the unemployment spell, then it would save on this cost by decreasing the promised utility of

the worker who passes the test and may at some point be referred to UI. Condition (10) and

(ND) constraint bring the planner to insure the worker against the risk of profiling outcome

(Uuf = Uup = Uu).

Passing to the choice of µp, one may be tempted to adopt a reasoning similar to the one that

leads to refer to SA only low-skilled workers (µf = 0) and guess that ‘Pass’ outcome only

targets high-skilled workers (e.g. µp = 1) at the optimum. However, this is not always the case,

due to concavity of V in µ for high-end expectations. Indeed, while concave returns cause the

marginal gain of ‘Pass’ informativeness about high human capital to decline in the level of

informativeness itself, reducing the frequency of ‘Pass’ and failing more workers cause a loss at

the margin. Therefore, the planner trades off informativeness of ‘Pass’ against its frequency up

to the point where the gain of higher informativeness equals the cost of lower frequency. In case

the marginal gain exceeds the marginal cost for every µ, the test fully discloses high human

capital. Otherwise, the internal solution satisfies

Vµ(µp, U
u
AP ) =

V(µp, U
u
AP )−V(0, UuAP )

µp
(11)

Eq. 11 shows that the upper posterior does not depend on worker’s initial expectations, which

means that all profiled workers hold the same revised expectation after receiving a ‘Pass’. The

downside is that the value of information for the government is negative when workers’ initial

expectation is larger than µp, irrespective of the administrative cost of profiling, as the low-skilled

ones among them are mistaken in a direction favorable to the government. Hence, disclosing any

information about their actual human capital causes the planner a loss that outweighs the gain
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of informing high-skilled workers.

Search-Assistance-and-Profiling (SP). Whenever the planner jointly adopts assisted search

and profiling technologies, its problem reads

V SP (µ,U) = max
csp,Uw,Uu

p ,U
u
f ,µp
−csp − κwp − κja+

+ β
[
π(µ)W (µ,Uw) + q(1− π(µp))V(µ′p, U

u
p ) + (1− q)(1− πL)V(0, Uuf )

]
sub: U = u(csp) + β

[
π(µ)Uw + q(1− π(µp))U

u
p + (1− q)(1− πL)Uuf

]
(PK)

U ≥ u(csp) + β
[
π(µ)Uw + (1− π(µ))Uuf

]
(ND), (MP)

As for the case of AP, the planner insures the worker against the risks related to profiling, by

committing to a constant continuation utility (i.e., Uup = Uuf ). About the informativeness of the

profiling strategy, the posterior expectation µp induced by ‘Pass’ outcome, is either 1 or solves

Vµ(µ′p, U
u
SP ) =

V(µ′p, U
u
SP )−V(0, UuSP )

µ′p
(12)

Indeed, if in case of AP the randomization in the space of expectations occurs over the upper

envelope V, now instead the randomization only occurs conditional on job-search failure. There-

fore, optimal profiling in SP delivers the concave closure (net of cost κwp) of (1−π(µ))V(µ′, UuSP )

in the space of expectations µ ∈ [0, 1].

Insurance-and-Profiling (IP). When profiling is implemented jointly with delegated search,

the planner’s problem reads

V IP (µ,U) = max
cip,Uw,Uu

p ,U
u
f ,µp
−cip − κwp+

+ β
[
π(µ)W (µ,Uw) + q(1− π(µp))V(µ′p, U

u
p ) + (1− q)(1− πL)V(0, Uuf )

]
sub: U = u(cip)− e+ β

[
π(µ)Uw + q(1− π(µp))U

u
p + (1− q)(1− πL)Uuf

]
(PK)

U ≥ u(cip) + β
[
qUup + (1− q)Uuf

]
(IC), Uup ≥ Uuf (ND), (MP)

Similarly to SP, profiling delivers the concave closure of (1 − π(µ))V(µ′, UuIP ) by selecting a

posterior upon ‘Pass’ which equal 1 or solves (12).

5.1 Optimal Welfare Program

I am now ready to characterize the optimal program. It is useful to first look at which policy

is optimal in each region of the (µ,U) state space. Later, I will argue how the accuracy of

profiling depends on the level of promised utility of the program. The following result places

performance-based profiling policies in the (µ,U) space.
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Proposition 6 (Profiling Policies in the (µ,U) Space). Fix U . No profiling policy is optimal

for very high or very low expectations. Assistance-and-Profiling (AP) is the optimal profiling pol-

icy over low-end expectations, Search-assistance-and-Profiling (SP) and Insurance-and-Profiling

(IP) over high-end ones. Now fix µ. IP is optimal for lower generosities, while AP and SP are

optimal for higher generosities.

Proof. See Appendix B: Properties of AP, SP and IP. �

The first part of the proposition can be explained through gains and losses of profiling. Profiling

generates savings for the government by delegating search to high-skilled workers with a lower

cost of incentives. The losses are of two types. First, the government incurs administrative

expenses (κwp). Second, it suffers a loss by passing any information to low-skilled workers who

are overconfident about their human capital. Therefore, for very high and very low expectations,

workers are on average efficiently matched with policies, and the gains from reallocation and/or

transfer reduction are outweighed by the losses. The second part of Prop. 6 sheds light on the

correspondence between profiling policies and their welfare counterparts. Indeed, each profiling

policy dominates the other two in a region of the space of expectations where the first-best

welfare policy is the one that conducts (or does not conduct) the job search with the same

method.

Figure 3: Optimal Policies in the Space of Expectation and Generosity.

Fig. 3 reports the optimal policies in the (µ,U) space. The complementarity of search effort

and expectations is mirrored in the best profiling policy adopted. In particular, AP does not

implement search and is thus optimal for lower-intermediate expectations. SP and IP, on the

other hand, which contemplate different forms of search, are optimal for upper-intermediate
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expectations. As generosity rises (moving vertically from bottom to top of Fig. 3), the return of

job search decreases due to higher costs of search-effort compensation and incentive provision

(due to convex 1/u′18), and worker’s search (UI and IP) is replaced by assisted search (JS and

SP) for high-end expectations, or by no search (SA and AP) for low-end expectations.

An important aspect of a profiling policy is the level of accuracy with which to detect the

human capital of each profilee. Indeed, as outlined in Eq. 11 and 12, the value of information

to the planner is possibly negative when the within-policy concavity of V prevails over its

between-policy convexity in µ. If so, the optimal profiling strategy does not completely disclose

high human capital upon ‘Pass’ (µp < 1) and refers also a fraction of low-skilled workers to

active policies upon it. Thus, any worker who receives a ‘Pass’ and is referred to an active policy

can downward revise her expectation and reenter into IP, SP or AP at any later stage (unless

she exits unemployment in the meantime). On the contrary, if profiling is fully accurate, workers

do not revise expectation henceforth and never undergo profiling at any successive stage. The

following result establishes a monotone relationship between accuracy and generosity.

Proposition 7 (Optimal Profiling Accuracy). Fix µ. Then, the accuracy of profiling in

detecting high human capital is increasing in the level of generosity (∂µp/∂U ≥ 0). In particular,

profiling is fully accurate under Search-Assistance-and-Profiling (SP) when no worker’s search

(UI or IP) is ever implemented in the downstream policy sequence.

Proof. See Appendix B: Properties of AP, SP and IP. �

The intuition of the result hinges on the sensitivity of the slope of V in µ to changes of U .

As anticipated in Prop. 2, V is locally within-policy supermodular and globally between-policy

submodular. Looking at the determinants of µp in Eq. 11 and 12, within-policy supermodularity

produces an increase in the left-hand side in response to a rise in U , which is accompanied by

a decrease in the right-hand side due to between-policy submodularity. To reestablish equality

between the two sides of the equation, µp must increase. In particular, for rather high generosity,

Prop. 2 and 3 have shown that, when the optimal program never resorts to worker’s search (for

high-end generosities), worker’s utility does not fall over time and the return of JS is linear in µ.

Therefore, the concave closure of V delivered by SP is the one realized by the full randomization

over expectations (µf = 0, µp = 1) and constant continuation utility over time (UuSP = U).

Government gains from information acquisition via profiling in two ways. First, by realizing

an efficient match between policies and workers. And second, by providing (lower) search incen-

tives only to workers who receive a ‘Pass’. For high generosity levels, the gains from profiling

exclusively originate from the first channel, as high-skilled workers are referred to Reemploy-

ment Services. This type of profiling is reminiscent of the WPRS program, where information

18See Lemma 1.
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on human capital is used as a criterion to allocate services. On the contrary, for low generosity

levels, information on human capital is used also to fine-tune transfers, like in REA program.

Savings of this second type are even more relevant when no opportunistic behavior is possible for

profilees and the program designer can thus index continuation utility to the profiling outcome,

as now workers are possibly transferred to ‘more generous’ or ‘less generous’ programs based on

their profiles (see Section 6).

6 Statistical Profiling

The presence of (ND) constraint in performance-based profiling prevents ’punishment’ on work-

ers who are referred to UI upon it. However, this restriction does not apply whenever human

capital is assessed via statistical methods. In particular, some programs profile welfare claimants

by conducting a background check and gathering observable data, and estimate a probability of

reemployment in accordance with the information collected, on the base of a large number of

past observations. Given that the outcome of statistical profiling does not rely on worker’s com-

mitment to it, the (ND) constraint does not apply in this new context. Consequently, the planner

exploits the additional flexibility originating from the removal of ’no-punishment’ restrictions

as a leverage for incentive provision, with the target of reducing expected future transfers to

recipients.

Profiling and reduction of transfers over time are two complementary instruments that open

the way for sizable efficiency gains in the design of the optimal assistance program. Indeed,

the planner now finds it optimal to index future transfers to the information detected during

worker’s profiling. Therefore, the contract of any profiling policy is not only consisting of the

lottery odds of each outcome, but also of the schedule of continuation utilities depending on it.

Proposition 8 (Optimal Statistical Profiling). When profiling refers workers to JS (for

higher generosities), it is fully accurate. When, instead, profiling refers workers to UI (for lower

generosities), the ‘Pass’ posterior is either 1 (i.e., full accuracy) or solves

Vµ(µ̂, Uup ) =
V(µ̂, Uup )−V(0, Uuf ) + VU (0, Uuf )(Uuf − Uup )

µ̂
(13)

with µ̂ = µp in AP and µ̂ = µ′p in SP/IP. As in case of performance-based profiling, µ̂ is

increasing in generosity.

Proof. See Appendix C: Statistical Profiling. �

The government sets different continuation utilities according to the profiling outcome. As shown

in Prop. 2, the cost of incentive provision and effort compensation is increasing in generosity,
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which makes the marginal loss of higher generosity larger in UI than in SA. Hence, the govern-

ment finds it optimal to lower the net discounted value of future payments upon ‘Pass’. The

result matches a characteristic of the actual REA program, where any worker who is found

high-skilled is referred to minimum welfare support in the form of SNAP transfers up until

reemployment. The criterion at the base of this rule is that any high-skilled worker does not

need more generous transfers as she is likely to find reemployment soon.

The possibility to randomize over continuation utilities modifies the informativeness of the ‘Pass’

outcome. Eq. 13 strikes a new balance between incentive cost reduction of UI contract, the like-

lihood of being referred to it, and the new channel arising from the relaxation of the Incentive-

Compatibility constraint.19 Increasing informativeness, indeed, also increases the possibility of

a ‘Fail’, conditional on which the planner pledges a larger utility. Hence, expected continuation

utility for the agent is larger if the ‘Pass’ outcome is made more informative (and less likely)

ceteris paribus, which allows the planner to further lower promised payments in order to restore

contract efficiency (i.e., a binding (PK) constraint).

Proposition 9 (Statistical Profiling Contracts).

• If the policy sequence after ‘Pass’ includes UI, utility upon ‘Pass’ is lower than current

utility. Otherwise, it remains constant.

• Unemployment benefits fall over time in IP, and remain constant otherwise. In particular,

in IP benefits fall to a larger extent once workers receive a ‘Pass’.

• In IP (resp., SP), the net wage upon reemployment is larger than (resp., equal to) current

unemployment benefits.

Proof. See Appendix C: Statistical Profiling. �

Fig. 4 plots the patterns of policies, expectation, utility and unemployment benefits for a

worker who enters the program with initial expectation of µ0 = 0.95 and promised utility of

U0 = 22.4. The worker is initially assisted in the search and profiled after 5 months. If she is

found low-skilled, she is referred to SA with constant transfers. If, instead, she is found high-

skilled, she is requested to search autonomously with transfers declining over time. As profiling

is fully accurate and human capital entirely detected, any policy under either profiling outcome

is absorbing.

19The first two forces where already at play in the problem with (ND) constraint (see Section 4).
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Figure 4: Consumption pattern upon profiling in a program with decreasing utility and µ0 = 0.95
and c0 = 100× exp((1− β)U0) = $939.20

7 Quantitative Analysis

7.1 Parameterization

As anticipated in Section 1, many welfare programs worldwide combine UI benefits, profiling

and job-search assistance, in the attempt to improve compliance to program requirements and

the effectiveness of job search. In US, for example, two are the operating programs that profile

workers: the Worker Profiling and Reemployment Services (WPRS) and the Reemployment and

Eligibility Assessment (REA). WPRS is a federally-mandated program that supplies job-search

assistance to welfare claimants who face a high risk of benefit exhaustion prior to reemployment.

REA is, instead, a voluntary program each State can opt in, whose goal is to reduce fraud and

20Monetary values are scaled down by a factor of 100.
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Parameter Symbol Value Source

Preferences
Discount Factor β 0.9
Search Effort Cost e 0.27 various sources

Labor Market
Job Search Hazard {πH , πL} {0.27, 0.14} basic monthly CPS, y. 2019
Net Wage {cwH , cwL} {$2,498, $1,128} Poe-Yamagata et al. (2011)
Wage Tax {τH , τL} {$178, -$224} EIC, FICA

Assisted Search
Administrative Cost κja $430 Balducchi and O’Leary (2018)

Worker Profiling
Administrative Cost κwp $50 Poe-Yamagata et al. (2011)

REA programs (FL, ID, IL, NV) ci,
i = FL, ID, IL,NVGenerosity (consumption equivalent) [$1,350,$2,301] Nicholson and Needels (2011)

Table 2: Choice of Parameters Value

fund misallocation by excluding from UI benefits those recipients who either do not conduct

any search activity, or do not need any form of welfare support (because they are highly re-

employable). In other words, REA and WPRS differ in the use of information they collect

with profiling, as with REA efficiency gains realizes via reduction of transfers, whereas with

WPRS by implementing the job-search with proper methodology. To meet their target, both

programs conduct an in-depth assessment of individual skills, based on which workers receive

job-counseling, learn how to develop a resume and/or are directly referred to employers (see

Manoli et al., 2018). Moreover, neither program allows workers enrolled in an employment or

training program to access any of these services.

Poe-Yamagata et al. (2011) conduct a cost-benefit analysis of the REA programs in Florida,

Idaho, Illinois and Nevada, which assisted a total of 134,550 claimants in 2009. Of all claimants,

58% were men, 66% were white and 13% black. The report distinguishes between high and low

skilled workers. The weighted mean share of high skilled participants is 48%.21

Turning to to the choice of parameters (see Table 2), the parameters to be chosen are: the

functional form of period utility (u(.)), the discount factor (β), the effort cost of searching (e),

the on-the-job productivity (i.e., the gross wage) and reemployment hazard rates of high- and

low-skilled workers ({ωh, πh}h∈{H,L}), and the cost of administering profiling (κwp). The unit of

time is set to one month.

I use a logarithmic specification of utility and set the monthly discount factor equal to β = 0.9.

Based on Pavoni et al. (2013), the working effort cost is 49% of the consumption equivalent

for men and 62% for women, corresponding respectively to em = 0.67 and ew = 0.97 given the

logarithmic specification22. And given that the percentage of male participants within the four

21The relative weight assigned to each State depends on the number of participants it assisted. In 2009,
Florida, Idaho, Illinois and Nevada supplied UI to 80,531, 18,156, 3,112 and 32,751 jobless workers, respectively
(Poe-Yamagata et al., 2011). The report does not make a distinction between high- and low-skilled workers in
Illinois. However, this is not a source of major concern, given the small number of welfare recipients in the State.

22Logarithm allows for separation of consumption utility from working disutility in a natural way, according

24



programs is 58%, the working effort cost of the average participant amounts to e = 0.58em +

0.42ew = 0.8. Krueger and Muller (2010) conduct an analysis on the cost of search effort based on

the American Time Use Survey (ATUS) and find that jobseekers spend on average 160 minutes

every day looking for a job. Following Pavoni et al. (2013), I target the search effort to 1/3

(160/480) of the working effort, hence e = 0.8/3 = 0.27. The value is consistent with Pavoni et

al. (2013), who estimate a cost of effort of e = 0.22.

Poe-Yamagata et al. (2011) reports data about net wages earned in the last 10 quarters prior to

the start of UI claim. Quarterly wages in all States display a hump-shaped pattern, which in-

creases until it reaches a peak three quarters before displacement and steadily declines later on.

The decline is consistent with the Ashenfelter’s dip, suggesting that wages fall in the pre-layoff

period (Ashenfelter, 1978). Preventing this effect from distorting estimates requires to exclude

the last three quarters of pre-layoff wage. However, the paper does not consider human capital

depreciation along the unemployed spell, which is instead well documented by the empirical lit-

erature (Keane and Wolpin, 1997; Neal, 1995) and requires to lower the last wage, in accordance

with the duration of unemployment spell. As the two effects tend to offset each other, I simply

consider the wage earned in the last quarter. As a consequence, the monthly net wages of Florida,

Idaho and Nevada are $1, 833, $1, 367 and $1, 900, respectively.23 The report, however, does not

distinguish between wages of high- and low-skilled workers. Thus, I exploit the cross-sectional

variation in wages and the share of high-skilled participants across States. Given that there are

two unknowns and three States, I compute {cH , cL} as the pair that minimizes the loss function

Λ(ĉH , ĉL) =

3∑
i=1

ϕi(θiĉH + (1− θi)ĉL − ci)2, i = {FL, ID,NV }

with ϕi being the fraction of all welfare recipients in country i. The computation delivers monthly

wages equal to cwH = $2, 498 and cwL = $1, 128. In order to compute their gross counterpart, I

reverse engineer the gross labor income by computing the tax and deductibles that led to net

amounts. In US, employees are subject to the Federal Insurance Contribution Act (FICA) tax,

which is comprehensive of Social Security and Medicare tax. FICA tax is a net payroll tax

which is levied half on employers and half on employees, and amounted to 15.3% of Adjusted

Gross Income (AGI) in 2009. Moreover, taxpayers with an AGI lower than a certain amount,

that depends on their marital status and number of children, are entitled to an Earned Income

Credit (EIC). Since no data on the marital status or the number of children of recipients is

available, I assume that the representative recipient is married and has two children. Under

to the formula
log((1− ξ)c) = log(c) + log(1− ξ) = log(c)− e

with ξ ∈ {0.49, 0.62} being the consumption equivalent of working disutility.
23Poe-Yamagata et al. (2011) does not report the percentage of high-skilled recipients in Illinois, which makes

their data on wages useless for the estimation of {cH , cL}.
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2009 FICA and EIC tax schemes, fiscal neutrality for a married couple with two children is

achieved at a gross annual income of $26, 250, with the couple paying a tax (resp., receiving

a subsidy) for an income above (resp., below) that threshold. Therefore, low-skilled recipients,

whose net annual income is $13, 536, receive a tax credit under EIC, making their gross income

lower than the net one, and precisely equal to $10, 844. High-skilled recipients, instead, have a

gross income of $32, 112 and a net one of $29, 976.24 Therefore, monthly gross wages are equal

to ωH = $2, 676 and ωL = $904.

I estimate the hazard rates {πH , πL}, using data from the basic monthly Current Population

Survey (CPS). Following the method-of-moments estimation, the probability of reemployment

after t periods is computed as the fraction of workers who exit unemployment at that time.

Reemployment probabilities are chosen as the ones that minimize the distance between the

probabilities of reemployment so computed and the expected hazard rates, with weights given

by the fraction of high- and low-skilled workers in the sample (for a more detailed description,

see Appendix E: Estimation of hazard rates). The estimated monthly hazard rates are πH = 0.27

and πL = 0.14. The assumption that the worker can exit unemployment only upon search is

quite extreme. I therefore assume the rate of reemployment in case no search is conducted either

by the worker or by the government to be equal to half the after-search rate of low-skilled

workers, i.e. π̂ = 0.07. A positive hazard rate in case of no search has a positive impact on the

return of passive labor-market policies, like SA and AP, and a negative impact on the return

of effort-incentivizing ones, like UI and IP, due to the increase in incentive costs. The value of

off-the-equilibrium zero-effort action, indeed, is higher and the incentive constraint now requires

satisfying a tighter condition

Uw − Uu ≥ e

β(π(µ)− π̂)

Passing to the choice of κwp, the estimates of average per-capita cost of REA in 2009 con-

tained in the report range from $12 (Idaho) to $134 (Illinois) and include cost of personnel and

operative costs of centers supplying REA services (e.g., State Workforce Agencies and One-Stop

Career Centers). I, therefore, set the administrative cost of profiling equal to the weighted av-

erage of REA per-capita cost among the four State programs, that is, κwp = $50. Instead, the

cost of assisting any worker in the job search is based on Balducchi and O’Leary (2018), who

estimate κja = $430. Such a figure is consistent with other estimates (κja = $500 in Pavoni et

al. (2016)), as well as cost estimates of programs that perform different activities (for instance,

search monitoring), but feature a similar set of operations (regular meetings with personnel at

One-Stop Career Centers, phone calls to employers, etc.). For instance, Pavoni and Violante

24The net annual income of high- and low-skilled workers is $2, 498 × 12 = $29, 976 and $1, 128 × 12 =
$13, 535, respectively. Low-skilled workers pay $1, 659 under FICA, i.e. the 15.3% of their gross income, but
receive $4, 350 under EIC, hence receiving an annual subsidy of $2, 691. High-skilled workers, instead, pay a FICA
tax of 15.3%× $32, 112 = $4, 913, and are given a tax rebate of $2, 774, that account for an annual tax of $2, 139.
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(2007) estimate a monthly cost of monitoring of $478 per claimant.

The generosity of any program depends both on the amount of flow endowments and the

duration. Poe-Yamagata et al. (2011) collects data about the average maximum and weekly

benefit in each State, as well as the distribution of benefit duration among participants. The

weekly benefit amount ranges from $234 in Florida to $299 in Nevada, suggesting a substantial

variability in generosity of State programs. In the US, unemployment benefits are paid under

four distinct schemes, which are activated in succession, depending on the current labor market

situation of each US State. Unemployment Insurance (UI) benefits last up to 26 weeks in all

States. Workers who are still unemployed at the end of the 26th week, are entitled to additional

53 weeks under the Emergency Unemployment Compensation (EUC) scheme. Moreover, States

pay additional benefits up to 20 more weeks under the Extended Benefits (EB) scheme, if their

unemployment rate exceeds 8.5%, which was the case for all four States in 2009. Exhaustees

of UI, EUC and EB are finally referred to the Supplemental Nutrition Assistance Program

(SNAP). This constitutes the typical instance of a purely income-support measure of last resort,

consisting of a constant allowance for the purchase of food, with no eligibility assessment or time

limit. Transfers decline over time, as claimants move from one program to another. WPRS and

REA never profile workers after they have exhausted UI, EUC and EB, as no assisted search or

further transfer reduction is possible once the worker enters SNAP. I assume that workers who

are entitled to 26 weeks of regular UI benefits are assisted under EUC and EB programs for

the whole prospective duration of the programs, i.e. 73 weeks, and that exhaustees who are still

unemployed at the end of UI+EUC+EB receive an endowment from the Supplemental Nutrition

Assistance Program (SNAP), which replaced the Food Stamps Program in 2008. Average total

payment was $7, 930 under EUC and $3, 844 under EB (Nicholson and Needels, 2011), hence

constituting a monthly endowment of cEUC/EB = $645, while a family of four people was

receiving a $501 monthly benefit from SNAP.25 The program’s generosity for each of the four

States is computed backward from the moment the welfare recipient enters into SNAP or finds

reemployment, up until the first month when she receives regular UI benefits. Worker’s utility

of reemployment in case she is high-(resp., low-)skilled amounts to26

UwH =
u(cwH)

1− β
=

log(24.98)

1− 0.9(1−)
= 32.18 UwL =

u(cwL)

1− β
=

log(11.28)

1− 0.9
= 24.23

while in SNAP with no search it is equal to

USNAPe=0 (µ) =
u(cSNAP ) + βπ̂[µUwH + (1− µ)UwL ]

1− β(1− π̂)
= 22.32µ+ 19.25(1− µ)

25See SNAP Data Tables at the following link: https://www.fns.usda.gov/pd/supplemental-nutrition-
assistance-program-snap.

26All monetary amounts are normalized so that 1 consumption unit corresponds to $100.
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Condition UwL > USNAPe=0 (0)+ e
β(πL−π̂) implies that the worker always finds it convenient to search

also during SNAP. Hence, the value of SNAP can be rewritten as function of entry expectation

µ

USNAP (µ) = µ
u(cSNAP )− e+ βπHU

w
H

1− β(1− πH)
+ (1− µ)

u(cSNAP )− e+ βπLU
w
L

1− β(1− πL)

If the worker is entitled to regular UI, EUC and EB, then her assistance program lasts for

26+53+20=99 weeks, that is, around 25 months. Starting from the last month, the following

recursion is implemented

Ui,j,t = u(cjt )− e+ β[µt−1
i πHU

w
H + (1− µt−1

i )πLU
w
L + (1− π(µt−1

i ))Ui,j,t+1], 1 ≤ t ≤ 25,

j = {FL, ID, IL,NV }, i = {< HS,HS,< CD,CD,GD}

with Ui,j,26 = USNAP (µ26
i ), j indexing States and i indexing education. The initial probability

of being high-skilled, µ0
i , equals the share of high-skilled individuals with same educational

attainment, θi. The generosity levels of each program and educational attainment, expressed in

consumption-equivalent terms,27 are reported in Table 3. Unsurprisingly, the generosity of the

program is increasing in the level of educational attainment, due to higher initial expectations

and UwH > UwL . Among the four States, Illinois (resp., Idaho) is the most (resp., least) generous

one for all levels of education.

States Less Than HS HS Diploma Some College College Graduate

Florida $1,350 $1,536 $1,580 $1,748 $1,811

Idaho $1,141 $1,282 $1,315 $1,440 $1,487

Illinois $1,666 $1,920 $1,981 $2,212 $2,301

Nevada $1,362 $1,550 $1,595 $1,763 $1,827

Table 3: Program generosity for any State and educational level (consumption equivalent).

7.2 Optimal REA Program

Workers are assessed via in-person interviews with REA staff. When issuing the call for the

interview, States target those who are predicted to be likely to exhaust their UI benefit. The

assessment is based on interviews, that last 45 min on average. After the interview, workers

profiled as high skilled suffer a reduction of unemployment benefits. Therefore, the profiling

methodology adopted in the REA program of statistical type, as it allows ’punishment’ on

recipients, based on their skills.

27The expression of consumption equivalent of U is

c(U) = exp((1− β)U)
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Figure 5: Optimal Policies for Florida’s REA Recipients.
Note: <HS=Less Than High School, HS=High School Diploma, <CD=Some College,
CD=College Degree, GD=Graduate Degree

Fig. 5 reports the optimal policies in the state-space of programs’ generosity and initial expec-

tation, and locates Florida’s REA recipients over it according to their educational attainment.28

Recipients with less than a college degree should better search and at the same time undergo

profiling right upon entry into the program, while those with a higher educational attainment

should be initially assisted in the search but not profiled. Quite surprisingly, the ones who are

assisted in the search are those recipients whose search would have a larger expected return.

The reason is that a larger π(µ0) is correlated with larger consumption upon reemployment and

so higher implicit utility U0. Hence, graduates’ effort is too expensive to compensate for the

government.

7.3 Welfare Gains

A relevant question for policymakers is how large savings they can realize from designing an

optimal profiling program. In order to estimate such value, I compare two distinct programs,

one with only welfare policies SA, UI and JS (W) and the other encompassing all six policies

(P). Fig. 6 reports the optimal patterns of promised utility, unemployment benefits and wage

taxes/subsidies in the two programs for Florida’s jobseekers with a high school degree (i.e., the

most numerous group, accounting for 54% of all recipients in Florida in 2009), whose initial

expectation and promised utility (in consumption equivalent terms) are µ0 = 0.72 and c(U0) =

28The initial generosity of REA programs in the other three States is quite similar.
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$1, 436, respectively. As shown in Fig. 5, this group of jobseekers are profiled under IP right

after entering P and referred to UI and SA, while in the program with no profiling they never

exit UI. The pattern of promised utility and unemployment benefits is thus falling over time

only for high-skilled workers in P and for both high- and low-skilled ones in W. However, the

larger incentive costs in the latter case are conducive to a steadier decline in both benefits and

utility. The reemployment tax displays a monotone increasing pattern in P (in the weak sense

for low-skilled workers) due to the declining promised utility. In W, instead, this component is

contrasted by declining expected productivity (and gross wage thereof) of workers and increasing

incentive costs, as expectations are revised downward. For this reason, the pattern of expected

wage tax upon reemployment is non monotonic in time.

Figure 6: Optimal REA program of Florida for recipients with a high-school diploma over a 25-
month horizon (UI+EUC+EB). Initial expectation and generosity are µ0 = 0.72 and c(U0) =
$1, 436, respectively.

Table 4 reports the per-capita welfare gain of profiling for each educational group. Given

the relative size of each group and the annual number (80,531) of REA recipients, the aggregate
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welfare gain of Florida in 2009 would have been $1,817,200. This figure is consistent with the

estimate provided by Poe-Yamagata et al. (2011), who estimate net per-capita savings of $47

for UI recipients and overall savings of $3,784,957.29

Less Than HS HS Diploma Some College College Graduate

Perc. in Program 0.13 0.54 0.17 0.12 0.04

µ0 0.54 0.72 0.76 0.9 0.95

c(U0) $1,275 $1,436 $1,474 $1,617 $1,671

Per-cap. Welfare Gain $14.5 $29.3 $26.2 $3.2 $0.5

Table 4: Welfare Gains of Profiling per Education Group in Florida (y. 2009)

7.4 Robustness Checks

A relevant dimension on which workers display a large heterogeneity is effort cost. Various studies

estimate different costs between men and women (Attanasio et al., 2008; Eckstein and Wolpin,

1989). In addition, they document the existence of a work-effort cost, which is not accounted

for in the baseline model of this paper. I therefore conduct a robustness check by allowing for

the search-effort cost to vary by ±10% with respect to the baseline value. Second, I assume that

the reemployed worker incurs a working cost equal to the search-effort one. Optimal policies in

the (µ,U) space for e = 0.24, e = 0.3 and ew = e = 0.27 are reported in Fig. 7. When the

search-effort cost is lower, then search-delegating policies (UI and IP) expand their areas at the

expense of assisted-search ones (JS and SP). The opposite occurs when the search-effort cost

is larger and all groups of recipients are offered search assistance upon entry. Positive working-

effort cost ew = 0.27 produces a comparative disadvantage for active labor-market policies, as

reemployment (and effort compensation upon it) is less likely in SA. Therefore, the gain from

reallocating workers across SA and JS is larger the higher is the working-effort cost, via relaxation

of the Promise-Keeping constraint. For this reason, SP replaces JS for high-end generosities and

expectations (see Fig. 7c).

29Poe-Yamagata et al. also estimate savings for UI+EUC recipients. However, the authors do not apply any
time discount, and this delivers an inflated estimation of net gains. For this reason, I consider only per-capita
savings realized on recipients of UI benefits, which come first in chronological order.
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(a) e = 0.24 (b) e = 0.3

(c) ew = e = 0.27

Figure 7: Optimal Policies over the (µ,U) Space for Different Effort Costs

A second parameter displaying great variability is the cost of assisted search and profiling

technologies. Poe-Yamagata et al. (2011) estimate that in Nevada, which merges reemployment

services with profiling, κja equals $148. Such a figure is consistent with past estimates of ad-

ministrative costs of assisted search. For example, Pavoni et al. (2013) compute an average cost

of $150 per person. Fig. 8a and 8b report the state space of policies for κja = $387 (-10%) and

κja = $473 (+10%). When assisting workers is less costly, JS and SP are optimal also for lower

generosities, and the opposite occurs when job-search assistance is more costly and incentivizing

workers more convenient also for higher effort-cost compensation.

The cost of profiling varies according to the design of the REA program. Given that all possible

levels of accuracy are allowed, I select the largest cost among all four States, i.e. κwp = $134

(Illinois). As a consequence, the areas of SP and IP shrink in favor of the respective welfare

policies, JS and UI (see Fig. 8c).
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(a) κja = $387 (b) κja = $473

(c) κwp = $134

Figure 8: Optimal Policy Space for Different Costs of Assisted Search and Worker Profiling

8 Private Search and Moral Hazard

The government may be unable to observe worker’s actions. In particular, worker’s search may

be private and thus unobservable to it. This may create a misalignment of expectations between

the two parties, whenever the agent shirks effort and derives no new information about her per-

manence in unemployment, while the principal assumes that this was the result of a failed search

and revises its expectation accordingly. The next period’s contract provides larger incentives,

consistently with the failed search hypothesis. Therefore, as the worker retains a more optimistic

expectation than the on-equilibrium one, she also expects larger transfers. As a consequence,

with private search the worker derives an additional advantage from shirking job search, other

than saving on effort. To contrast it, the planner promises larger transfers upfront in case of

re-employment. These high-powered incentives enlarge in the prospective duration of private

search, following the increase in the number of possible deviations from recommended effort by
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the agent, and are driven to zero if the next-period contract does not request private search.

Indeed, the agent can benefit from deviation only if a dispersion in promised transfers exists in

the two alternative scenarios of reemployment and unemployment.

In consequence to the possibility of a covert misalignment of expectations, the planner incurs

payment of learning rents to induce agent’s search. The value of UI and IP thus incorporates

such rents. Starting with UI, the problem of the planner when private search ends in the next

period is

V UI
1 (µ,U) = max

cui,Uw,Uu
−cui + β

[
π(µ)W (µ,Uw) + (1− π(µ))V̂ (µ′, Uu)

]
sub: V̂ (µ,U) := max

i∈{SA,JS,SP,AP}
V i(µ,U)

U = u(cui)− e+ β
[
π(µ)Uw + (1− π(µ))Uu

]
(PK)

U ≥ u(cui) + βUu (IC)

The only difference with the non-contractible effort case is a restriction on the basket of policies

to choose among in the next period, in order to be consistent with the current provision of

learning rents. The dispersion in continuation utilities is the same as in (6).

Passing to the case of longer UI duration, define T (µ,U) as the duration of UI, for any worker

with initial expectation µ and utility U

T (µ,U) := inf
{
n : i(µn, Un) 6= UI

}
(14)

where µn := µ(n)(µ) (resp., Un := Un(U); resp., i(µn, Un)) is defined as the expectation (resp.,

continuation utility; resp., policy) after failing the job search for n periods. Next step is to design

a contract which is robust to any possible deviation from t = 0 (today) to t = T periods ahead.

The worker could deviate in the first, second, ... T -th period after being assigned to UI. But she

may also decide to shirk multiple times, possibly not successive, before reverting to job search,

or even shirk forever after. For this reason, the design of a robust contract is in principle a

complicated task. The following holds.

Proposition 10. Any contract incentivizing search effort for T periods is robust against any

possible deviation from the sequence of efforts, whenever it is robust against one-shot deviations
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from that sequence.30 Therefore, IC constraint when implementing UI for T periods reads

U ≥ u(cui) + β
[
Uu + Λ(T, µ)

]
with Λ(T, µ) defined by the recursion


Λ(1, µT−1) = 0

Λ(T − j, µj) =
(

π(µ(j))

π(µ(j+1))
− 1
)
e+ βπ(µ(j))

(
1

π(µ(j+1))
− 1
)

Λ(T − j − 1, µ(j+1)), 0 ≤ j ≤ T − 2

(15)

which thus is (i) independent of Uu, (ii) null in µ ∈ {0, 1} and/or T = 1, and (iii) increasing

in T .

Proof. See Appendix D: Moral Hazard. �

The dispersion in utilities between re-employment and unemployment now reads

Uw − Uu =
e+ βΛ(T, µ)

βπ(µ)

The gap between Uw and Uu, which proxies the cost of incentives, is increasing in Λ. If UI is

implemented for t < T periods, then learning rents are lower and the planner incurs a lower

contract cost.

Insurance-and-Profiling (IP). When profiling is adopted jointly with private search, the

planner’s problem reads

V IP (µ,U) = max
cip,Uw,(Uu

r )r={p,f},µp
−cip − κwp + β

[
π(µ)W (µ,Uw) + q(1− π(µp))V (µ′p, U

u
p )+

+ (1− q)(1− πL)V (0, Uuf )
]

sub: U = u(cip)− e+ β
[
π(µ)Uw + q(1− π(µp))U

u
p + (1− q)(1− πL)Uuf

]
U ≥ u(cip) + β

[
q(Λ̂i(µp,U

u
p )(µp) + Uup ) + (1− q)(Λ̂i(0,U

u
f )(0) + Uuf )

]
with: Λ̂i(µ) =


Λ(t, µ), if i = (UI, t)

0, otherwise

, (MP)

Any worker can be profiled at any stage of the unemployment spell, possibly multiple times.

If IP is designed to fully reveal the underlying state, the worker is certain to be high-skilled

30This result is reminiscent of the way Euler equations are derived. Indeed, Euler equations are conditions
imposed on the path of controls (consumption, investment, etc.), which guarantee that the decision maker is
never willing to select any different path lying in the feasibility set and differing from the optimal one in one
period only. The same property holds for Nash equilibrium strategies in repeated games, which are so if robust
to deviations at any single node of the game tree.
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after receiving a ‘Pass’ and low-skilled otherwise. Hence, she does not revise her expectation

henceforth, even if she fails to exit unemployment in the next stages of the welfare program. In

other words, the policy she is assigned to under either profiling outcome is absorbing. In case

profiling is not designed as a perfect signal, instead, the worker who passes it and is referred

to any active policy can downward revise her expectation and reenter into IP at a later stage

(unless she escapes unemployment in the meantime).

Proposition 11. When worker’s search is private, accuracy of profiling under IP is determined

by the need to reduce learning rents, as the ‘Pass’ posterior is either 1 or solves

Vµ(µ′p, U
u
p ) =

V (µ′p, U
u
p )− V SA(Uuf ) + V SA

U (Uuf )(Uuf − Uup )

µ′p
+
[
V SA
U (Uuf )−WU (µ,Uw)

]µpΛµ(t, µp)− Λ(t, µp)

µ′p

(16)

Proof. See Appendix D: Moral Hazard. �

The result sheds light on the complementarity between profiling and private search. Indeed,

in the case of AP and SP, the government selected the upper posterior more (i.e., ‘Pass’) by

equating the marginal gain of higher informativeness and the marginal cost of lower frequency,

which led to the possibility of recommending search also to also a fraction of low-skilled workers.

Now, a further component, namely the reduction of learning rents, drives the choice of the upper

posterior, in addition to incentive cost reduction.

9 Conclusions

This paper provides an estimate of the welfare gains that can be obtained in programs of

unemployment assistance via profiling of recipients. The rationale for embedding profiling into

a welfare program stems from the difficulty of inferring recipients’ job-finding skills and on-the-

job productivity. At the optimum, active labor-market policies and workers’ expectations about

personal skills and productivity are complementary. Workers who are likely to be low-skilled are

thus provided income support only, while those who have moderate or high expectations of being

high-skilled are supplied with job-search assistance or search incentives, which come in the form

of lower wage taxes or higher wage subsidies. Looking at the dimension of program’s generosity,

instead, search-incentivizing policies are adopted for low-end generosity, while search-assistance

ones are adopted for high-end generosity, due to increasing costs of effort compensation. This

causes the dynamic of worker’s utility which is implicit in the stream of payments to be decreasing

along the spell whenever incentives to worker’s search are provided.

The effects of implementing worker profiling within the program divide into gains and losses.

The gains from workers’ profiling stem from incentive alignment between workers and the govern-
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ment. Indeed, rather than pooling into the same policy and contract both high- and low-skilled

workers with equal expectations, profiling allows to refer them to the proper job-search method

so to minimize the cost of the program. However, worker profiling entails also a loss for the

government on those workers whose expectations are positively biased before being profiled as

low-skilled. This loss may be conducive to partial detection of hidden skills aimed at strategic

persuasion of (a fraction of) low-skilled workers in the sense of Kamenica and Gentzkow (2011).

The deep reason at the base of partial detection of skills is that low-skilled workers are suffi-

ciently productive and the generosity of the program sufficiently low that the government would

rather compensate them for searching than putting them at rest. Therefore, some low-skilled

workers might better receive a boost of expectations and keep searching for a job, rather than

staying inactive, even at the cost of higher incentive payments to high-skilled workers.

The profiling outcome is matched by a fine-tuning of payments, whenever followed by search-

incentivizing policies. In particular, an optimal program promises lower transfers to recipients

who are profiled as high-skilled and required to search for job, due to agency costs increasing

in the level of promised utility. This result, which features actual REA programs, should be

accompanied with a decreasing-in-time pattern of unemployment benefits, as opposed to the

constant subsidy under SNAP.

Some questions remain unanswered. The main shortcoming of the paper is constituted by the

assumption on costs and accuracy of profiling. The actual per-capita cost of profiling depends on

the accuracy with which skills are detected. A more accurate detection, indeed, leads to a more

expensive profiling process (e.g., longer in-person interviews, more elaborate tasks to perform).

In addition, any actual profiling program, as well as any sort of tests aimed at detecting a hid-

den characteristic, contains a given amount of noise that impedes an exact detection of skills.

Assuming (i) the cost of profiling to vary in accordance to the change induced on the initial

expectation (i.e., known as entropy cost in the information design literature),31 and/or (ii) the

accuracy of information detection to be upper bounded, might lead to different estimates of the

value of worker profiling. In this sense, the welfare gain computed in Section 7 can be read as

an upper bound on the return from adopting optimal profiling.

A second aspect on which further inspection is required is the absence of any information asym-

metry. Both parties are assumed to share the same initial expectation, as claimants truthfully

report their personal data to the provider at the beginning of the program. However, if claimants

could conceal their personal information, those with high expectations in reemployment would

anticipate being requested to search and choose to misreport it,32 so as to benefit from larger

31For a description of costs of information detection that allow the concavification result to survive, see Ka-
menica and Gentzkow (2014).

32In no other case they would find convenient to lie, as all contracts other than incentive-providing ones are
independent of expectations.
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incentives. If this is the case, the government would need to make search-incentivizing contracts

robust to information misreporting and this would further exacerbate the problem of incentive

provision. In this sense, as noticed in the case of private worker search (Section 8), profiling

might constitute a way for the government to curb the information rents that originate from the

agency problem.
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APPENDIX

Appendix A: Properties of SA, JS and UI

Proof of Prop. 1

Proof. Envelope Theorem and first-order conditions imply

V SA
U (µ,U) = − 1

u′(csa)
= VU (µ,Uu)

Now, given that SA is optimal in (µ,U), then VU (µ,U) = V SA
U (µ,U) = VU (µ,Uu), and con-

cavity of V in U implies that Uu = U . Therefore, the state space (µ,U) is equal in the next

period, proving that SA is optimal forever after.

�

Proof of Lemma 1

Proof. The problem of policy i ∈ {SA, JS, UI} reads

V i(µ,U) = max
(z,Uw,Uu)∈Γ(µ,U)

−g(z)− κi + β
[
pi(µ)W (µ,Uw) + (1− pi(µ))V(µi, Uu)

]
sub: Γi(µ,U) =

{
(z, Uw, Uu) : U = z − ei + β

[
pi(µ)Uw + (1− pi(µ))Uu

]
, U ≥ z + βUu

}
with pSA(µ) = 0, pJS(µ) = pUI(µ) = π(µ) and

(ei, κi) =


(0, 0) if i = SA

(0, κja) if i = JS

(e, 0) if i = UI

The following holds.

Lemma 2. V i is decreasing in U and increasing in µ. Moreover, if V is concave in either

argument, then so is V i.

Proof. To prove concavity of V i in U/µ, it suffices to show that:

• the objective function is concave in the choice variables and U/µ;

• the graph of the feasibility set is convex.
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Simply notice that g = u−1 is convex, and that W and V are concave in Uw and Uu, respectively.

Moreover, while π(µ)W (µ,U) is linear in µ, (1− π(µ))V(µ′, U) is concave in µ if V is concave

in the first argument, as

−2(πH − πL)
∂µ′

∂µ
Vµ(µ′, U) + (1− π(µ))

[∂2µ′

∂µ2
Vµ(µ′, U) +

∂µ′

∂µ
Vµµ(µ′, U)

]
< 0

as (1− π(µ))∂
2µ′

∂µ2
= 2(πH − πL)∂µ

′

∂µ .

Furthermore, PK constraint is linear in U , z, Uw and Uu, and so is IC constraint, since U i is

linear in U . This means that the graph of Γiµ (i.e., for constant µ) defined as

GrΓiµ =
{

(z, Uw, Uu, U) : U = z − ei + β
[
pi(µ)Uw + (1− pi(µ))Uu

]
, U ≥ z + βUu

}
is convex. Same applies to the graph of ΓiU (i.e., for constant U), since PK and IC are linear in

µ.

To prove (negative) monotonicity in U , one needs to show:

• (negative) monotonicity of the objective function in U ;

• (negative) monotonicity of the feasibility set Γiµ in U , i.e.

U < Ũ =⇒ Γi(µ, Ũ) ⊆ Γi(µ,U)

The objective function does not directly depend on U , while monotonicity can be shown by

rewriting the IC constraint as

Uw − Uu ≥ ei

βpi(µ)

which does not depend on U . Therefore, the PK constraint is tightened by an increase of U ,

which thus leads to a shrinkage of Γiµ.

Proving (positive) monotonicity of V i in µ is analogous. Indeed, it follows from:

• (positive) monotonicity of the objective function in µ;

• (positive) monotonicity of the feasibility set ΓiU in µ, i.e.

µ < µ̃ =⇒ Γi(µ,U) ⊆ Γi(µ̃, U)

The objective function is always monotone in µ, as so are W and V in their first argument, µ′ is

an increasing function of µ and W (µ,Uw) ≥ V (µi, Uu). Monotonicity of Γi(., U), instead, holds
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as an increase of µ leads to a relaxation of (IC)33. Indeed, (IC) is more slack since

µ < µ̃ =⇒ Uw − Uu ≥ ei

βpi(µ)
≥ ei

βpi(µ̃)

�

V i and V concave in U

The proof of concavity of V i in U follows a recursive argument. Guessing concavity of V in U ,

it holds that V i is concave by Lemma 2 and that, from definition (2) of V,

VUU (µ,U) = V i
UU (µ,U)

when no randomization over U is conducted. Otherwise, VUU (µ,U) = 0.

V i and V concave in µ

The proof of concavity in µ follows the same steps, as assuming concavity of V in µ leads to

concavity of V i. However, the second derivative of V in µ reads

Vµµ(µ,U) = qV i
µµ(µ,U) + (1− q)V j

µµ(µ,U) < 0, with: q =
U − U
U − U

V UI and V JS supermodular

The derivative of V UI and V JS wrt U reads

V UI
U (µ,U) = − 1

u(cUI)
= π(µ)WU (µ,UwUI) + (1− π(µ))VU (µ′, UuUI)

V JS
U (µ,U) = − 1

u(cJS)
= WU (µ,UwJS) = VU (µ′, UuJS)

Thus

V UI
µU (µ,U) = (πH − πL)(WU (µ,UwUI)−VU (µ′, UuUI)) + π(µ)WUU (µ,UwUI)

∂UwUI
∂µ

+

+ (1− π(µ))VUU (µ′, UuUI)
∂UuUI
∂µ

+ (1− π(µ))
∂µ′

∂µ
VµU (µ′, UuUI)

= (πH − πL)(WU (µ,UwUI)−VU (µ′, UuUI) +WUU (µ,UwUI)(U
u
UI − UwUI))+

+
∂UuUI
∂µ

(
π(µ)WUU (µ,UwUI) + (1− π(µ))VUU (µ′, UuUI)

)
+ (1− π(µ))

∂µ′

∂µ
VµU (µ′, UuUI)

Convexity of 1/u′ implies concavity of WU , which boils down to

WU (µ,UwUI) +WUU (µ,UwUI)(U
u
UI − UwUI) > WU (µ,UuUI) = WU (µ′, UuUI) ≥ VU (µ′, UuUI)

33(PK) is always relaxed by an increase in µ (recall that Uw ≥ Uu at the optimum).
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Assume per contra that V UI
µU (µ,U) ≤ 0. Then, it must be that ∂UuUI/∂µ > 0, which in turn

implies that ∂cUI/∂µ < 0, as u(cUI) = U − βUuUI . But this leads to a contradiction as

V UI
µU (µ,U) = − ∂

∂cUI

( 1

u′(cUI)

)∂cUI
∂µ

> 0

Passing to JS,

V JS
µU (µ,U) = WUU (µ,UwJS)

∂UwJS
∂µ

= VµU (µ′, UuJS)
∂µ′

∂µ
+ VUU (µ′, UuJS)

∂UuJS
∂µ

Per contra, assume that V JS
µU (µ,U) < 0. Then, it must be that ∂U sJS/∂µ > 0, s ∈ {w, u}.

However, the PK-JS constraint reads

U = (1− β + π(µ))UwJS + β(1− π(µ))UuJS

And so

∂UwJS
∂µ

= − β

1− β + βπ(µ)

[
(πH − πL)(UwJS − UuJS) + (1− π(µ))

∂UuJS
∂µ

]
< 0

where the inequality follows from assumption UwJS ≥ UuJS . Hence, I have reached a contradiction.

V JS
µµ (µ,U) = 0 and V JS

U (µ,U) = V SA
U (U) with no JS → UI transition

The period before entering SA, the FOC condition is

V JS
U (µ,U) = − 1

u′(cJS)
= − 1

u′(cSA)
= V SA

U (UuJS) =⇒ UuJS = (1− β)u(cJS) = UwJS = U

The value of JS wrt µ after imposing UuJS = UwJS = U reads

V JS(µ,U) = −u−1((1− β)U)− κja + β
[
π(µ)W (µ,U) + (1− π(µ))V(µ′, U)

]
Therefore, if V is linear in the first argument, so is V JS , given linearity of π(µ)W (µ,U) in µ.

But then the proof follows from a recursive argument and linearity of V SA in µ.

�

Proof of Prop. 2

Proof. The derivative of the value of each policy i with respect to U is

V i
U (µ,U) = VU (µ,U) = − 1

u′(ci)
(17)
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which can be obtained by applying the envelope theorem to the problem of each policy.

Third, first-order conditions in UI and JS impose

VU (µ′, UuUI)− V UI
U (µ,U) = VU (µ′, UuUI) + λUI − χUI =

π(µ)

1− π(µ)
χUI > 0 (18)

V UI
U (µ,UUI) = −(λUI − χUI) = WU (µ,UwUI) + χUI > WU (µ,UwUI) (19)

V JS
U (µ,U) = −λJS = WU (µ,UwJS) = VU (µ′, UuJS) (20)

where λi (resp., χi) is the Lagrange multiplier associated to (PK) (resp., (IC)) constraint. Hence,

VU (µ′, UuUI) > V UI
U (µ,U) > VU (µ′, U) =⇒ UuUI < U (21)

where the first inequality holds by FOC and the second by supermodularity of V. Similarly, in

JS consumption is constant over time and employment states by (20), which implies that

u(cJS) = u(cwJS) = (1− β)UwJS =⇒ U =
(
1− β + βπ(µ)

)
UwJS + β(1− π(µ))UuJS

and

VU (µ,U) = V JS
U (µ,U) = VU (µ′, UuJS) ≤ VU (µ,UuJS) (22)

where the inequality holds since V is supermodular, the first equality as JS is optimal in (µ,U)

and the second equality from FOC (20). Thus, by concavity of V in U , it holds that UuJS ≤ U ≤

UwJS . Supermodularity of JS follows from Lemma 1.

Optimal Policies in the U Space

The proof of the first part of the statement consists of showing that at the crossing point

V UI
U (µ,U) ≤ V JS

U (µ,U) ≤ V SA
U (U) = WU (µ,U) (23)

First, the closed-form expressions of W and V SA deliver

WU (µ,U) = − 1

u′(u−1((1− β)U))
= V SA

U (U)

Then, by (20),

V JS
U (µ,U) = WU (µ,UwJS) ≤WU (µ,U) = V SA

U (U)

where the inequality follows from U ≤ UwJS .
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By (21), we know that UuUI < U . Hence,

u(cUI) = U − βUuUI > (1− β)U =⇒ V UI
U (µ,U) < − 1

u′(u−1((1− β)U))
= V SA

U (U)

If JS refers to SA, then

u(cJS) = u(cuJS) = u(cSA) = (1− β)UuJS

So UwJS = UuJS = U and

V JS
U (µ,U) = − 1

u′(u−1((1− β)U))
= V SA

U (U)

So far, I have shown that if JS is followed by SA, then

V UI
U (µ,U) ≤ − 1

u′(u−1((1− β)U))
= V SA

U (U) = V JS
U (µ,U)

What is left to show is that V UI
U (µ,U) ≤ V JS

U (µ,U), even if JS does not refer to SA in (µ,U).

Per contra, assume that V UI
U (µ,U) > V JS

U (µ,U). First, it must be that the inequality

− 1

u′(u−1((1− β)U))
≥ V UI

U (µ,U) > V JS
U (µ,U)

holds and implies that (1− β)U ≤ u(cUI) < u(cJS). And from (22), it must be that UuJS < U <

u(cJS)
1−β .

Now, by FOCs (18) and (20), it holds that

VU (µ′, UuUI) > V UI
U (µ,U) > V JS

U (µ,U) = VU (µ′, UuJS)

By concavity of V in U , it must hold that UuUI < UuJS . But this is impossible as

u(cUI) + βUuUI = U = u(cJS) + βUuJS + βπ(µ)
[u(cJS)

1− β
− UuJS

]
> u(cUI) + βUuUI

where the inequality follows from cJS > cUI and u(cJS)
1−β > UuJS .

Therefore, it has been shown that V UI
U (µ,U) ≤ V JS

U (µ,U). Hence, V UI dominates V JS for

low-end generosity levels and crosses it from above.

Optimal Policies in the µ Space

Passing to the second part of the statement, it is enough to prove that at the crossing point

0 = V SA
µ (U) < V JS

µ (µ,U) < V UI
µ (µ,U)

47



The derivatives of V JS and V UI wrt to µ

V JS
µ (µ,U) =β(πH − πL)

[
W (µ,UwJS)−V(µ′, UuJS)− λJS(UuJS − UwJS)

]
+

+ β
[
π(µ)Wµ(µ,UwJS) + (1− π(µ))

∂µ′

∂µ
Vµ(µ′, UuJS)

]
(24)

V UI
µ (µ,U) =β(πH − πL)

[
W (µ,UwUI)−V(µ′, UuUI)− λUI(UuUI − UwUI)

]
+

+ β
[
π(µ)Wµ(µ,UwUI) + (1− π(µ))

∂µ′

∂µ
Vµ(µ′, UuUI)

]
(25)

Consider JS being implemented in the current period. Using FOC −λJS = WU (µ,UwJS), it holds

that

W (µ,UwJS) +WU (µ,UwJS)(UuJS − UwJS)−V(µ′, UuJS) > W (µ,UuJS)−V(µ′, UuJS) > 0 = V SA
µ (U)

where the first inequality follows from concavity of W in U and the second is a necessary

condition for optimality of JS.

Consider a program that implements UI with the additional constraint that UuUI ≥ UuJS , and

label its value V̂ UI . Moreover,

WU (µ,UwJS) = V JS
U (µ,U) ≥ V UI

U (µ,U) > WU (µ,UwUI) =⇒ UwJS < UwUI

where the first inequality follows from the statement proved above and the second one from

FOC of UI.34 Hence, derivatives (24) and (25) can be rewritten

V JS
µ (µ,U) =β(πH − πL)

[
W (µ,UwJS)−V(µ′, UuJS) +WU (µ,UwJS)(UuUI − UwJS) + VU (µ′, UuJS)(UuJS − UuUI)

]
+

+β
[
π(µ)Wµ(µ,UwJS) + (1− π(µ))

∂µ′

∂µ
Vµ(µ′, UuJS)

]
V̂ UI
µ (µ,U) =β(πH − πL)

[
W (µ,UwUI)−V(µ′, UuUI) +WU (µ,UwUI)(U

w
JS − UwUI) +WU (µ,UwUI)(U

u
UI − UwJS)

]
+

+β
[
π(µ)Wµ(µ,UwUI) + (1− π(µ))

∂µ′

∂µ
Vµ(µ′, UuUI)

]
In order to prove the result, it is enough to show that

W (µ,UwJS) +WU (µ,UwJS)(UuUI − UwJS)−V(µ′, UuJS) + VU (µ′, UuJS)(UuJS − UuUI) <

<W (µ,UwUI) +WU (µ,UwUI)(U
w
JS − UwUI) +WU (µ,UwUI)(U

u
UI − UwJS)−V(µ′, UuUI)

and

π(µ)Wµ(µ,UwJS) + (1− π(µ))
∂µ′

∂µ
Vµ(µ′, UuJS) < π(µ)Wµ(µ,UwUI) + (1− π(µ))

∂µ′

∂µ
Vµ(µ′, UuUI)

34The additional constraint preserves the FOC V UI(µ,U) > WU (µ,Uw
UI).
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The first inequality holds since:

• W (µ,UwJS) < W (µ,UwUI) +WU (µ,UwUI)(U
w
JS − UwUI), by concavity of W in U ;

• WU (µ,UwJS)(UuUI − UwJS) < WU (µ,UwUI)(U
u
UI − UwJS), as UuUI < U ≤ UwJS < UwUI ;

• V(µ′, UuUI) ≤ V(µ′, UuJS) + VU (µ′, UuJS)(UuUI − UuJS), by concavity of V in U .

The second inequality holds since WµU = 0 and Vµ(µ′, UuJS) ≤ Vµ(µ′, UuUI), by assumption

UuJS ≤ UuUI and supermodularity of V. Therefore, it has been shown that V̂ UI crosses V JS

from below in the µ space, and so does V UI , which implies that UI dominates JS for high

expectations. �

Proof of Prop. 3

Unemployment Benefits

Thus, unemployment benefits fall over time during UI and stay constant in JS, as

VU (µ′, UuUI) > V UI
U (µ,U) =⇒ cuUI < cUI

V UI
U (µ,UUI) > WU (µ,UwUI) =⇒ cUI < cwUI

V JS
U (µ,U) = WU (µ,UwJS) = VU (µ′, UuJS) =⇒ cJS = cwJS = cuJS

where the implications follow from (17).

Continuation Utility

If JS never refers to UI, then one can start computing backward from the point in time where

JS refers to SA. Hence, V JS
U (µ,U) = V SA

U (U). Therefore UwJS = UuJS = U and VµU (µ,U) =

V JS
µU (µ,U) = 0. The last period before the worker enters SA, the contract satisfies

V JS
U (µ,U) = VU (µ′, UuJS) = VU (µ,UuJS) =⇒ UuJS = U

The result is shown by induction argument.

Proof of Prop. 4

Assume that UI is the optimal policy in (µ,U). From the first-order condition on UI, it holds

that

−g′((1− β)U + ηUI(µ,U)) = V UI
U (µ,U) = −g′(U − βUuUI)

From which it follows that

U − ηUI(µ,U)

β
= UuUI
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Since by assumption ηUIU (µ,U) ≤ 0, the left-hand side is increasing in U . Thus,

UuUI = U − ηUI(µ,U)

β
≤ Û(µ)− ηUI(µ, Û(µ))

β
≤ Û(µ′)

The condition guarantees that anytime UI is adopted in (µ,U), then the next-period state in

case of job search failure becomes (µ′, UuUI) where it is still optimal to implement UI (or switch

to SA) as UuUI ≤ Û(µ′). To conclude, the program never switches from UI to JS.

Appendix B: Properties of AP, SP and IP

Proof of Prop. 6

Proof. Define µi,j the threshold in the space of expectations where the planner is indifferent

between policies i and j.

For µ ≤ µjs,ui, IP is dominated by SP as

V IP (µ,U) =− c− κwp + β[π(µ)W (µ,Uwui) + q(1− π(µp))V(µ′p, U) + (1− q)(1− π(µf ))V(µ′f , U)]

≤− c− κja − κwp + β
[
π(µ)W (µ,U) + q(1− π(µp))V(µ′p, U) + (1− q)(1− π(µf ))V(µ′f , U)]

≤− c− κja − κwp + β
[
π(µ)W (µ,U)+

+ max
q̂,µ̂f ,µ̂p

{
q̂(1− π(µ̂p))V(µ̂′p, U) + (1− q̂)(1− π(µ̂f ))V(µ̂′f , U)

}
] = V SP (µ,U)

where the first inequality follows from V UI(µ,U) ≤ V JS(µ,U) when µ ≤ µjs,ui. Thus, IP crosses

SP in µsp,ip ≥ µjs,ui.

For µ ≤ µsa,js, SP is dominated by AP as

V SP (µ,U) =− c− κja − κwp + β
[
π(µ)W (µ,U) + q(1− π(µp))V(µ′p, U) + (1− q)(1− π(µf ))V(µ′f , U)]

≤− c− κwp + β
[
π(µ)V(U) + q(1− π(µp))V(µ′p, U) + (1− q)(1− π(µf ))V(µ′f , U)]

≤− c− κwp + β max
q̂∈∆∗([0,1])

∫ 1

0
q̂(x)V(µ̂(x), U) = V AP (µ,U)

where the first inequality follows from V JS(µ,U) ≤ V SA(U) when µ ≤ µsa,js, while the second

from the fact that the distribution (q1, q2, q3) = (π(µ), q(1 − π(µp)), (1 − q)(1 − π(µf ))) over

posteriors (µ1, µ2, µ3) = ((µπH)/π(µ), µ′p, µ
′
f ) belongs to ∆∗([0, 1]).35 Thus, SP crosses AP in

µsp,jp ≥ µsa,js. �

35µ1 solves
π(µ)µ1 + q(1− π(µp))µ′p + (1− q)(1− π(µf )µ′f = µ
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Proof of Prop. 7

Proof. Consider the two first-order conditions of the AP problem

Vµ(µp, U
u
AP )−

V(µp, U
u
AP )−V(0, UuAP )

µp
= 0

qVU (µp, U
u
AP ) + (1− q)VU (0, UuAP ) + λAP = 0

For the pair (µp, U
u
AP ) to be a point of maximum, it must be that the Hessian matrix H of

second-order derivatives has positive determinant.

H =

qVUU (µp, U
u
AP ) + (1− q)VUU (0, UuAP ) q

(
VµU (µp, U

u
AP )− VU (µp,Uu

AP )−VU (0,Uu
AP )

µp

)
VµU (µp, U

u
AP )− VU (µp,Uu

AP )−VU (0,Uu
AP )

µp
Vµµ(µp, U

u
AP )


Differentiating the two conditions by U yields

Vµµ(µp, U
u
AP )

∂µp
∂UuAP

+ VµU (µp, U
u
AP )−

VU (µp, U
u
AP )−VU (0, UuAP )

µp
= 0{

q
[
VµU (µp, U

u
AP )−

VU (µp, U
u
AP )−VU (0, UuAP )

µp

] ∂µp
∂UuAP

+ qVUU (µp, U
u
AP ) + (1− q)VUU (0, UuAP )

}∂UuAP
∂U

+

+ λAPU = 0

Plugging the expression of
∂µp
∂Uu

AP
from the first equation into the second one, the term in curly

brackets becomes

∆ := − q

Vµµ(µp, UuAP )

[
VµU (µp, U

u
AP )−

VU (µp, U
u
AP )−VU (0, UuAP )

µp

]2
+qVUU (µp, U

u
AP )+(1−q)VUU (0, UuAP )

with ∆ < 0, as det(H) > 0 and Vµµ(µp, U
u,p
AP ) < 0. Therefore the second equation becomes

∂UuAP
∂U

∆ + λAPU = 0

which shows that
∂Uu

AP
∂U > 0, since V AP

UU (µ,U) = −λAPU < 0. From the first equation, local

supermodularity of V and VU (µp, U) < VU (0, U) (see Prop. 2) yield
∂µp
∂Uu

AP
> 0, which deliver

the result.

Finally, full accuracy of profiling whenever ‘Pass’ refers to JS and no incentive is provided along

the spell follows from linearity of V JS in µ (see proof of Lemma 2).

�
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Appendix C: Statistical Profiling

Proof of Prop. 8 and 9

Proof. µf = 0 descends form the linearity of SA and JS in µ. In addition, any worker who

receives a ‘Pass’ (resp., ‘Fail’) is referred to UI/JS (resp., SA).

Assistance-and-Profiling (AP)

At the optimum,

V AP
U (µ,U) = VU (µp, U

u,p
AP ) = VU (0, Uu,fAP ) (26)

− 1

u′(cAP )
= V AP

U (µ,U) = VU (0, Uu,fAP ) = − 1

u′(cu,fAP )
(27)

which implies that cAP = cu,pAP = cu,fAP , and Uup ≤ U ≤ Uuf . Indeed, by (27), it follows

U = u(cAP ) + β(qUu,pAP + (1− q)Uu,fAP ) = (1− βq)Uu,fAP + βqUu,pAP

where the passage follows from u(cAP ) = u(cu,fAP ) = (1−β)Uu,fAP , and the expression of consump-

tion in SA (see Prop. 1). If referred to JS -which is optimal only for high-end generosities-, then

µp = 1 given the linearity of JS in µ. Moreover, for U high enough, JS never refers to UI, and

so UwJS = U = UuJS , which in turn implies that u(cJS) = (1− β)UwJS = (1− β)U = u(cSA) and

V JS
U (µ,U) = − 1

u′(cJS)
= − 1

u′(cSA)
= V SA

U (U)

Therefore, if referred to JS/SA forever after, then Uu,pAP = Uu,fAP = UuAP . So, nothing changes with

respect to the case with ND constraint, whenever AP refers workers to SA and JS forever after,

that is, for higher generosities.

Assume, instead, AP refers to UI directly, or to JS which later refers to UI. Then VU (µ,U) <

V SA
U (U)

V SA
U (Uu,fAP ) = VU (µp, U

u,p
AP ) =⇒ Uu,pAP < U < Uu,fAP

I now show that the ‘Pass’ posterior µp in AP is increasing in U .

VU (µp, U
u,p
AP ) + λAP = 0

−
V(µp, U

u,p
AP )−V(0, Uu,fAP ) + λAP (Uu,pAP − U

u,f
AP )

µp
+ Vµ(µp, U

u,p
AP ) = 0
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The Hessian matrix of second-order derivatives reads

H =

VUU (µp, U
u,p
AP ) VµU (µp, U

u,p
AP )

VµU (µp, U
u,p
AP ) Vµµ(µp, U

u,p
AP )


(µp, U

u,p
AP ) are a point of maximum of the objective function if and only if

VUU (µp, U
u,p
AP ) < 0, det(H) > 0

The first condition holds as V is concave in each argument (see proof of Lemma 2). Differentiating

the two FOCs wrt U yields

VµU (µp, U
u,p
AP )

∂µp
∂U

+ VUU (µp, U
u,p
AP )

∂Uu,pAP

∂U
= −∂λ

AP

∂U

Vµµ(µp, U
u,p
AP )

∂µp
∂U

+ VµU (µp, U
u,p
AP )

∂Uu,pAP

∂U
=
Uu,pAP − U

u,f
AP

µp

∂λAP

∂U

and solving the system, one obtains

 ∂µp
∂U

∂Uu,p
AP
∂U

 = det(H)−1

 Vµµ(µp, U
u,p
AP ) −VµU (µp, U

u,p
AP )

−VµU (µp, U
u,p
AP ) VUU (µp, U

u,p
AP )

Uu,p
AP−U

u,f
AP

µp

−1

 ∂λAP
∂U

Both derivatives are positive, since Uu,pAP − U
u,f
AP < 0 and an increase in U makes it harder for

the planner to satisfy (PK) constraint (i.e., ∂λAP /∂U > 0).

Search-assistance-and-Profiling (SP)

At the optimum

V SP
U (µ,U) = WU (µp, U

w,p
SP ) = WU (µf , U

w,f
SP ) = VU (µ′p, U

u,p
SP ) = VU (µ′f , U

u,f
SP )

=⇒cSP = cwSP = cu,pSP = cu,fSP , Uu,pSP ≤ U ≤ U
u,f
SP = Uw,pSP = Uw,fSP

since

u(cSP )

1− β
=
u(cwSP )

1− β
= UwSP =

u(cu,fSP )

1− β
= Uu,fSP

where the last equality follows from referral to SA upon ‘Fail’. So

U = (1− β + βπ(µ) + β(1− q)(1− π(µf )))Uu,fSP + βq(1− π(µp))U
u,p
SP

and the same argument in AP applies, meaning that the continuation utility upon ‘Pass’ falls if

and only if the outcome refers workers directly or indirectly to UI.

Insurance-and-Profiling (IP)
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The optimal IP contract satisfies

VU (µ′p, U
u,p
IP )− V IP

U (µ,U) =
π(µp)

1− π(µp)
χIP >

πL
1− πL

χIP = VU (0, Uu,fIP )− V IP
U (µ,U) =⇒ Uu,pIP < Uu,fIP

VU (µ′p, U
u,p
IP ) > VU (0, Uu,fIP ) > V IP

U (µ,U) = −(λIP − χIP ) > WU (µ,UwIP ) =⇒ cu,pIP < cu,fIP < cIP < cwIP

(28)

Moreover, Uu,pIP < U , as

(1− β)Uu,pIP ≤ u(cu,pIP ) < u(cIP ) = U − β[qUu,pIP + (1− q)Uu,fIP ] < U − βUu,pIP

where the first inequality follows from (23), the second one from (28) and the last one from

Uu,pIP < Uu,fIP .

Passing to the equation that determines the ‘Pass’ posterior in IP, the first-order condition of

µp reads

1

µp

[
(1− πL)V(0, Uu,fIP )− (1− π(µp))V(µ′p, U

u,p
IP )

]
− (πH − πL)V(µ′p, U

u,p
IP ) +

(1− πH)(1− πL)

1− π(µp)
Vµ(µ′p, U

u,p
IP )+

+ λIP
[ 1

µp

[
(1− πL)Uu,fIP − (1− π(µp))U

u,p
IP

]
− (πH − πL)Uu,pIP

]
+
χIP

µp

[
Uu,pIP − U

u,f
IP

]
= 0

Rearranging the terms and using the first order condition on Uu,fIP

(1− πL)
[
VU (0, Uu,fIP ) + λIP

]
= χIP

it yields

Vµ(µ′p, U
u,p
IP ) =

V(µ′p, U
u,p
IP )−V(0, Uu,fIP ) + VU (0, Uu,fIP )(Uu,fIP − U

u,p
IP )

µ′p

with Uu,fIP > Uu,pIP . �

Appendix D: Moral Hazard

Proof of Prop. 10

Proof. The first part of the proof is contained in the Technical Appendix. It shows that mul-

tiple deviations can be accounted for by single one-shot deviations, that is, deviations from
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recommended action lasting only one period. Now consider the recursion (15)

Λ(1, µT−1) = 0

Λ(2, µT−2) = u(cT−1)− e+ βπ(µT−2)UwT + β(1− π(µT−2))UuT − UuT−2

= UuT−2 + β[π(µT−2)− π(µT−1)](UwT − UuT )− UuT−2 = β[π(µT−2)− π(µT−1)]
e

βπ(µT−1)

Λ(T − j, µj) = u(cj+1)− e+ βπ(µj)Uwj+2+

+ β(1− π(µj))[u(cj+2)− e+ βπ(µj+1)Uwj+3 + β(1− π(µj+1))[...]︸ ︷︷ ︸
Λ(T−j−1,µj+1)+Uu

j+2

]− Uuj+1

= Uuj+1 + β[π(µj)− π(µj+1)](Uwj+2 − Uuj+2) + β(1− π(µj))Λ(T − j − 1, µj+1)− Uuj+1

= β[π(µj)− π(µj+1)]
βΛ(T − j − 1, µj+1) + e

βπ(µj+1)
+ β(1− π(µj))Λ(T − j − 1, µj+1)

=
( π(µj)

π(µj+1)
− 1
)
e+ βπ(µj)

( 1

π(µj+1)
− 1
)

Λ(T − j − 1, µj+1), 0 ≤ j ≤ T − 1

And notice that the constraint ( ˆIC, t), defined as

Us(W, µs, σs) = u(cs(σ
s)) + β

[
Us+1(W, µs+1, (σs, u)) + Λ(T − s, µs)

]
makes the contract robust against any possible deviation after period t, thanks to the recursive

definition of Λ. In particular,

( ˆIC, t) ⇐⇒ (IC, s), ∀s ≥ t

Hence the whole set of IC constraints can be expressed by

U = U0(W, µ, σ0) = u(c) + β
[
Uu + Λ(T, µ)

]
, ( ˆIC, 0)

Λ is defined by the recursion in (15), and is independent of Uu. In addition, Λ(t+1, µ) ≥ Λ(t, µ),

with inequality being strict for µ ∈ (0, 1).36 Indeed, taking the difference between Λ(t + 1, µ)

and Λ(t, µ), it holds:


Λ(2, µ)− Λ(1, µ) =

(
π(µ)
π(µ′) − 1

)
e > 0

Λ(t+ 1, µ)− Λ(t, µ) = βπ(µ)
(

1
π(µ′) − 1

)
(Λ(t, µ′)− Λ(t− 1, µ′)) > 0, ∀t ≥ 2

�

Lemma 3. The value of (UI, t)t≥1 is increasing in µ.

36In µ ∈ {0, 1}, no learning occurs and learning rents are null.
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Proof. The problem of policy (UI, t)t≥1 reads

V UI
t (µ,U) = max

(z,Uw,Uu)∈Γ(µ,U)
−g(z) + β

[
π(µ)W (µ,Uw) + (1− π(µ))V UI

t−1(µ′, Uu)
]

sub: Γ(µ,U) =
{

(z, Uw, Uu) : U = z − e+ β
[
π(µ)Uw + (1− π(µ))Uu

]
,

U ≥ z + β
[
Uu + Λ(t, µ)

]}
V UI

1 is monotone increasing in µ (see Lemma 1). By induction, assume that V UI
t−1 is increasing

in µ. Positive monotonicity of V UI
t in µ follows from:

• (positive) monotonicity of the objective function in µ;

• (positive) monotonicity of the feasibility set ΓiU in µ, i.e.

µ < µ̃ =⇒ ΓiU (µ) ⊆ ΓiU (µ̃)

The objective function is always monotone in µ, as so are W and V UI
t−1 in their first argument,

µ′ is an increasing function of µ and W (µ,U) ≥ V UI
t−1(µ′, U) at the optimum. Monotonicity of

ΓU , instead, holds whenever an increase of µ leads to a relaxation of (IC).37 Now, if Λ(t, .) is

constant or decreasing, this always holds. Indeed, (IC) is more slack if Λ(t, .) is decreasing as

µ < µ̃ =⇒ Uw − Uu ≥ e/β + Λ(t, µ)

π(µ)
>
e/β + Λ(t, µ̃)

π(µ̃)

To prove that monotonicity holds also when (Λ(t, .))t>1 is increasing in µ, I prove that the RHS

is decreasing in µ.

From the definition of Λ in (15), I can rewrite

e/β + Λ(t, µ)

π(µ)
=

e

π(µ)

( 1

β
− 1
)
− βΛ(t− 1, µ′) + β

(e/β + Λ(t− 1, µ′)

π(µ′)

)
(29)

Define f(µ) := π(µ)
π(µ′) , and notice that it is concave in µ. Indeed:

fµ(µ) = (πH − πL)2 (1− µ)2πL(1− πL)− µ2πH(1− πH)[
(1− πH)πHµ+ (1− πL)πL(1− µ)

]2
fµµ(µ) = − 2(πH − πL)2πHπL(1− πH)(1− πL)[

(1− πH)πHµ+ (1− πL)πL(1− µ)
]3 < 0

Thus, the derivative of Λ(t, µ) by µ reads

Λµ(t, µ) = fµ(µ)e+ β
[
fµ(µ)− (πH − πL)

]
Λ(t− 1, µ′) + β

[
f(µ)− π(µ)

]∂µ′
∂µ

Λµ(t− 1, µ′) (30)

37(PK) is always relaxed by an increase in µ (recall that Uw ≥ Uu in optimum).
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Two cases are possible:

1. fµ(µ) ≥ πH − πL

2. fµ(µ) < πH − πL

If the first case applies, then

Λµ(t, µ) > 0 =⇒ Λµ(t− 1, µ′) > 0

Assume per contra that Λµ(t− 1, µ′) < 0. But then by (strict) concavity of f , fµ(µ′) > πH −πL.

Which, coupled with the expression of the derivative in (30), implies that for the assumption to

be true, it must be that Λµ(t− 2, µ′′) < 0, and so on, until

fµ(µ(t−2))e = Λµ(2, µ(t−2)) < 0 < πH − πL < fµ(µ(t−2))

Therefore, I have reached a contradiction.

Now, I am ready to prove by induction that

Λµ(t, µ) > 0 ∧ fµ(µ) ≥ πH − πL =⇒ ∂

∂µ

(e/β + Λ(t, µ)

π(µ)

)
< 0

Base Step (t = 2)

Notice that the result is always true for t = 2, as the expression reads

e/β + Λ(2, µ)

π(µ)
=

e

π(µ)

( 1

β
− 1
)

+
e

π(µ′)

Induction Step

Assume per contra that

Λµ(t, µ) > 0 ∧ fµ(µ) ≥ πH − πL ∧
∂

∂µ

(e/β + Λ(t, µ)

π(µ)

)
> 0

Since the first two addends of (29) have been shown to be decreasing in µ, for it to be true it

must be that ∂
∂µ′

(
e/β+Λ(t−1,µ′)

π(µ′)

)
> 0. However,

Λ(t, µ) > 0∧fµ(µ) ≥ πH−πL =⇒ Λµ(t−1, µ′) > 0∧fµ(µ′) > πH−πL =⇒ ∂

∂µ′

(e/β + Λ(t− 1, µ′)

π(µ′)

)
< 0

where the second implication follows by induction hypothesis. Hence the contradiction.

What is left to be shown is the following:

Λµ(t, µ) > 0 ∧ fµ(µ) < πH − πL =⇒ ∂

∂µ

(e/β + Λ(t, µ)

π(µ)

)
< 0
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Base Step (t = 2)

Same as in the case above, as the thesis always applies.

Induction Step

The derivative by µ has the following expression

∂

∂µ

(e/β + Λ(t, µ)

π(µ)

)
=

1

π(µ)

[
Λµ(t, µ)− (πH − πL)

e/β + Λ(t, µ)

π(µ)

]

So assume per contra that it is positive. Then this means that Λµ(t, µ) > (πH − πL) e/β+Λ(t,µ)
π(µ) .

Moreover, by (29), it either means that Λµ(t− 1, µ′) < 0 or that

∂

∂µ′

(e/β + Λ(t− 1, µ′)

π(µ′)

)
> 0

The first case can not apply, as (30) would imply that

(πH − πL)
e

βπ(µ)
< (πH − πL)

e/β + Λ(t, µ)

π(µ)
< Λµ(t, µ) < fµ(µ)e < (πH − πL)e

which is impossible, as 1
βπ(µ) > 1. Therefore, it must be the case that

∂

∂µ′

(e/β + Λ(t− 1, µ′)

π(µ′)

)
> 0 =⇒ Λµ(t− 1, µ′) > (πH − πL)

e/β + Λ(t− 1, µ′)

π(µ′)
> 0

Now, if fµ(µ′) ≥ πH − πL, I have reached a contradiction, since I have shown above that

Λµ(t− 1, µ′) > 0 ∧ fµ(µ′) ≥ πH − πL =⇒ ∂

∂µ′

(e/β + Λ(t− 1, µ′)

π(µ′)

)
< 0

If, instead, fµ(µ′) < πH − πL, then

Λµ(t− 1, µ′) > 0 ∧ fµ(µ′) < πH − πL =⇒ ∂

∂µ′

(e/β + Λ(t− 1, µ′)

π(µ′)

)
< 0

by induction hypothesis, and a contradiction is reached in this case, too.

�

Proof of Prop. 11

Define Λ(t, µ) as the learning rents necessary to implement UI for t prospective periods ahead,

and notice that, if µf = 0, Λ(t, µf ) = 0. Then, from the definition of IP, the first-order condition
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reads

∂q

∂µp

[
(1− π(µp))V (µ′p, U

u
p )− (1− πL)V (0, Uuf )

]
− q(πH − πL)V (µ′p, U

u
p )+

+q
(1− πH)(1− πL)

1− π(µp)
Vµ(µ′p, U

u
p ) + λ

[ ∂q
∂µp

[
(1− π(µp))U

u
p − (1− πL)Uuf

]
− q(πH − πL)Uup

]
−

−χ
[ ∂q
∂µp

Λ(t, µp) + qΛµ(t, µp)
]

= 0

Which can be rewritten as

Vµ(µ′p, U
u
p ) =

V (µ′p, U
u
p )− V (0, Uuf )

µ′p
+
(
λ− χ

1− πL

)Uup − Uuf
µ′p

+
χ

1− πL
µpΛµ(t, µp)− Λ(t, µp)

µ′p

and plugging in −V SA
U (Uuf ) = −VU (0, Uuf ) = λ− χ

1−πL and λ = −WU (µ,Uw) delivers the result.

Appendix E: Estimation of hazard rates

In order to infer the hazard rates {πH , πL}, I proceed as follows. First, from the basic monthly

Current Population Survey (CPS), I derive the fraction of high- and low-skilled workers for each

level of educational attainment θi, i ∈{LessHighSc., HighSc., SomeCollege, College, Graduate}.38

Then, I compute the hazard rate out of unemployment for each time horizon (πt)t≥1, from the

cross-section of jobless workers who report to have been unemployed for t periods of time, using

the following formulas

π1 = 1− Prob(t > 1) = 1− # jobless for t > 1

#jobless

π1 + (1− π1)π2 = 1− Prob(t > 2) = 1− # jobless for t > 2

#jobless

....

Third, by looking at the same cross-sections, I compute the share of those with same spell

duration (at the time the survey is conducted) who also have attained the same educational

level, ψi,t. Lastly, I compute {πH , πL} that minimize

{πH , πL} = arg min
π̂H ,π̂L

∑
t

(∑
i

ψi,t(θiπ̂H + (1− θi)π̂L)− πt
)2

that is,

πH =

∑
t bt
∑

s πsas −
∑

s πs
∑

t atbt
12
∑

t a
2
t − (

∑
t at)

2
, πL =

(
∑

t πt)(
∑

s a
2
s)−

∑
s πsas

∑
t at

12
∑

t a
2
t − (

∑
t at)

2

38High-skilled workers are defined as those who earn a wage higher than the mean of ωH and ωL, that is,
$2, 527.
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with at =
∑

i ψitθi, bt =
∑

i ψit(1 − θi) = 1 − at.39 The results are reported in Table 5. The

hazard rate πt is quite stable over time, as well as the share of any education level among all

jobless people with same duration of unemployment spell, ψit. The estimated hazard rates are

πH = 0.27 and πL = 0.14.

Total < High Sch. High Sch. D. < Col.40 Col. D. Grad. D.

θi 39,333 0.54 0.72 0.76 0.9 0.95

Horizon Total ψit=Pr(Education=i
∣∣ Horizon ≥ t) Haz. Rate (πt)

t=1 3,481 0.11 0.31 0.29 0.28 0.01 0.22

t=2 2,517 0.11 0.32 0.29 0.27 0.01 0.28

t=3 1,742 0.11 0.32 0.29 0.27 0.01 0.31

t=4 1,316 0.11 0.32 0.29 0.28 0.01 0.24

t=5 1,081 0.11 0.32 0.29 0.28 0 0.18

t=6 815 0.11 0.33 0.28 0.27 0 0.25

t=7 586 0.12 0.33 0.28 0.27 0 0.28

t=8 468 0.12 0.33 0.28 0.27 0 0.2

t=9 356 0.11 0.32 0.29 0.27 0 0.24

t=10 274 0.11 0.31 0.28 0.29 0 0.23

t=11 215 0.11 0.33 0.26 0.29 0 0.22

t=12 167 0.11 0.34 0.25 0.3 0 0.22

Table 5: Education-cohort size for any unemployment spell duration.

39First-order conditions for πH and πL return the minimizers of the convex objective function.
40’< Col.’ item includes workers who attended college, but have not earned a degree, and workers with an

Associate Degree, which is a post-secondary course of study lasting 2 or 3 years.
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Technical Appendix

Setting

• T <∞

• σt ∈ {u,w} describes the worker status, either unemployed or employed. If σt = w, the

worker finds reemployment, which is an absorbing state. Hence p(σt+1 = w|σt = w) = 1.

• σt = {σ0, ..., σt} is a public history describing the employment status of the worker

• ct(σ
t) is the transfer function, with ct(σ

t) ≥ 0 for every σt. Let c(α\σt) be the stream of

transfers downstream of node σt

• at(σ
t) is the effort level, with

at(σ
t) ∈


{0, e}, if σt = u

e, if σt = w

The effort is unobservable by the government. Denote by a(α\σt) the continuation plan

of effort costs downstream of node σt, and a(σt) its upstream counterpart

• h ∈ {L;H} is the hidden state, which is revealed once W finds reemployment

• µt(σ
t,a(σt−1)) -with σt = (σt−1, σt)- is the expectation held by W during unemployment,

expressing the probability about state H. This is clearly a non-contractible variable, as W

can hide it from G. µt(σ
t,a(σt−1)) impacts the probability of future σt+1. in particular,

p(σt+1 = w|σt = u, µt, at(σ
t) = e) = π(µt), p(σt+1 = w|σt = u, µt, at(σ

t) = 0) = 0

where I have dropped dependence of µt by (σt,a(σt−1)) to ease notation. Moreover,

µt(σ
t,a(σt−1)) undergoes an updating process every time W exerts effort in t and remains

unemployed in t+ 1

µt+1(σt,a(σt−1), σt+1 = u, at(σ
t) = e) =

µt(σ
t,a(σt−1))(1− πH)

µt(σt,a(σt−1)))(1− πH) + (1− µt(σt,a(σt−1)))(1− πL)

(31)

Instead, if no effort is exerted, W does not revise expectation41

µt+1(σt,a(σt−1), σt+1 = u, at(σ
t) = 0) = µt(σ

t,a(σt−1)) (32)

41Notice that µt+1(σt,a(σt−1), σt+1 = w, at(σ
t) = 0) is not defined as h is disclosed once σt+1 = w.
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• If σs = w,

rs(σ
s,a(σs−1)) = ω̃(µt(σ

t,a(σt−1))), if t = inf
s
{ys = w} − 1

Otherwise, if σt = u, rs(σ
s,a(σs−1)) = 0.

Worker’s Problem in UI

Let W(σt) = (c,a)(α\σt) =
{
cs(σ

s), as(σ
s)
}T
s=t

denote the contract offered by G to W. W’s

expected utility reads

Ut(W,a(σt−1), σt) = E
{ T∑
s=t

βs−t
(
u(cs(σ

s))− as(σs)
)∣∣∣W(σt), µt(σ

t,a(σt−1))
}

+

+ βT+1−t
∑
σT+1

p(σT+1|σt, µt,a(σT ))UT+1(σT+1)

=
T∑
s=t

βs−t
∑
σs

p(σs|σt, µt(σt,a(σt−1)), at(σ
t))
{
u(cs(σ

s))− as(σs)
∣∣∣W(σt)

}
+ βT+1−t

∑
σT+1

p(σT+1|σt, µt,a(σT ))UT+1(σT+1)

= u(ct(σ
t))− at(σt)+

+ β
[
p(σt+1 = w|σt = u, µt, at(σ

t))

T∑
s=t+1

βs−(t+1)
∑

h∈{H,L}

p(h|σt+1 = w, µt)
{
u(cs(σ

s))− e
∣∣∣W ′(σt, w, h)

}
+

+ p(σt+1 = u|σt = u, µt, at(σ
t))

T∑
s=t+1

βs−(t+1)×

×
∑
σs

p(σs|σt+1 = u, µut+1, at+1(σt, u))
{
u(cs(σ

s))− as(σs)
∣∣∣W ′(σt, u)

}]
+

+ βT+1−t
∑
σt+1

p(σt+1|σt, µt,a(σt))
∑
σT+1

p(σT+1|σt+1, µt+1,a(σT ))UT+1(σT+1)

= u(ct(σ
t))− e+

+ β
∑

h∈{H,L}

p(h|µt)p(σt+1 = w|h)
[ T∑
s=t+1

βs−(t+1)
{
u(cs(σ

s))− e
∣∣∣W ′(σt, w, h)

}
+ βT−tUT+1(σt,w, h)

]
+

+ β(1− π(µt))
[ T∑
s=t+1

βs−(t+1)
∑
σs

p(σs|σt+1 = u, µut+1, at+1(σt, u))
{
u(cs(σ

s))− as(σs)
∣∣∣W ′(σt, u), µut+1

}
+

+
∑
σT+1

p(σT+1|σt+1, µut+1,a(σT ))UT+1(σT+1)
]

= u(ct(σ
t))− e+ β

{
π(µt)

[µtπH
π(µt)

Ut+1(W ′,a(σt), (σt, w,H)) +
(1− µt)πL
π(µt)

Ut+1(W ′,a(σt), (σt, w, L))
]
+

+ (1− π(µt))Ut+1(W ′,a(σt), (σt, u))
}
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with µut+1 = µt+1(σt, σt+1 = u,a(σt−1), at(σ
t))42.

The IC constraint starting from time t reads

Ut(W,a(σt−1), σt) ≥ Ut((c, â)(α\σt),a(σt−1), σt), ∀ â(α\σt) ∈ At(α\σt) (33)

Government’s Problem in UI

The problem for G reads

V UI(U,a(σt−1), σt) = max
W

E
{ T∑
s=t

βs−t
(
rs(σ

s,a(σs−1))− cs(σs)
)∣∣∣W(σt), µt(σ

t,a(σt−1))
}

sub: (33), Us(W ′(σs),a(σs−1), σs) ≥ U, ∀s ≥ t

Given that expectation is revised upon (failure and) effort exerted only in the last period, it

follows a Markovian process, meaning that expectation in t+ 1 can be predicted by expectation

µt and effort in t, and realization of σt+1. Thus, I define xt = (µt(σ
t, xt−1), at(σ

t)) and write

µt+1(σt, σt+1 = u,a(σt)) = µt+1(σt, σt+1 = u, µt(σ
t, xt−1), at(σ

t)) = µt+1(σt, σt+1 = u, xt)

And given that reemployment is absorbing and discloses the state, there exists an isomorphism

between all unemployment histories (σs, σs+1 = u) and terminal realizations σs+1 = u, as no

extra information is contained in σs which can not be inferred by observing σs+1 = u. As a

result, next expectation µt+1 only depends on current expectation µt and effort at and future

realization of σt+1:

µt+1(σt, σt+1 = u, xt) = µt+1(σt+1 = u, µt, at) =


µt, if at = 0

µt(1−πH)
1−π(µt)

, if at = e

Therefore:

Ut(W, µt, σ
t) = u(ct(σ

t))− e+ β
{
π(µt)

[µtπH
π(µt)

Ut+1(W ′, H, σt, σt+1 = w) +
(1− µt)πL
π(µt)

Ut+1(W ′, L, σt, σt+1 = w)
]
+

+ (1− π(µt))Ut+1(W ′, µut+1, σ
t, σt+1 = u)

}
= u(ct(σ

t))− e+ β
{
µtπHUt+1(W ′, H, σt, σt+1 = w) + (1− µt)πLUt+1(W ′, L, σt, σt+1 = w)+

+ (1− π(µt))Ut+1(W ′, µut+1, σ
t, σt+1 = u)

}

42Note that by assumption on absorbing nature of re-employment, σs = (σt, (yj = w)st+1), ∀ σs % (σt, σt+1 =
w).
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G’s problem can be rewritten as

V UI(U, µt, σ
t) = max

W∈Ω(µt,σt)
E
{ T∑
s=t

βs−t
(
rs(σ

s, µs)− cs(σs)
)∣∣∣W(σt), µt

}
= max

ct(σt),at(σt)∈Γ(µt,σt)
rt(σ

t, µt)− ct(σt)+

+ β
[
π(µt) max

W ′∈Ω′(µt+1,σt,σt+1=w)
E
{ T∑
s=t+1

βs−(t+1)
( =ω̃(µt)︷ ︸︸ ︷
rs(σ

s, µs)−cs(σs)
)∣∣∣W ′(σt, σt+1 = w), µt+1

}
+

+ (1− π(µt)) max
W ′∈Ω′(µt+1,σt,σt+1=u)

E
{ T∑
s=t+1

βs−(t+1)
(
rs(σ

s, µs)− cs(σs)
)∣∣∣W ′(σt, σt+1 = u), µt+1

}]
sub: Ut(W, µt, σ

t) ≥ Ut((c,a′)(α\σt), µt, σt), ∀ a′(α\σt) ∈ At(α\σt) (IC)

µt := µt(σ
t, µt−1, at−1(σt−1))

Lemma 4. G prefers to insure W against the risk of h realization upon reemployment.

Lemma 5. Define (IC, s) the constraint that makes contractW robust to the alternative strategy

a′(α\σs) = (0, e1T−s) ∈ As(α\σs) that shirks in s and sticks to effort from s + 1 to the final

period T

Us(W, µs, σ
s) ≥ Us((c,a′)(α\σs), µs, σs) = u(cs(σ

s)) + βUs+1(W, µs, (σ
s, u))

If (IC, s)Ts=t are all binding under contract W, then contract W is feasible.

Proof. First, consider that no learning motive or moral hazard problem is present upon reem-

ployment, when state is disclosed, nor there is any chance that any reemployed W falls back into

unemployment (p(ys = u|yt = w) = 0, ∀s > t). Hence in order to verify (33), one can only focus

on continuation histories σs % σt where σs =
(
σt, (yj)

s
j=t+1

)
= (σt, (u)sj=t+1). For this reason, I

therefore adopt the convention that σs+1 = (σs, u). Define also µs as the expectation in period

s if contract W is followed.

Notice that continuation utility at time s > t upon reemployment (ys = w) follows

Us(W, h, σs) = u(cs(σ
s))− e+ βUs+1(W, h, (σs, w))

while upon failure (ys = u), it follows

Us(W, µs, σ
s) = u(cs(σ

s))− e+ β
[
µsπHUs+1(W, H, (σs, w)) + (1− µs)πLUs+1(W, L, (σs, w))+

+ (1− π(µs))Us+1(W, µus+1, (σ
s, u))

]
with: µus+1 = µs+1(σs, σs+1 = u, µs, e)
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By Lemma 4, focusing on contracts W such that

Us+1(W, H, (σs, w)) = Us+1(W, L, (σs, w))

=⇒µπHUs+1(W, H, (σs, w)) + (1− µ)πLUs+1(W, L, (σs, w)) = π(µ)Us+1(W, (σs, w))

is without loss of generality.

Second, the following holds true:

Us(W, µs, σ
s) = u(cs(σ

s)) + βUs+1(W, µs, σ
s+1)

=⇒Us(W, µ, σs) ≥ u(cs(σ
s)) + βUs+1(W, µ, σs+1), ∀µ : µ > µs (34)

The proof of (34) will be given by induction, joint with the main statement.

Base Step (t = T )

UI contract ends in t = T , where the only possible deviation is â(α\σT ) = âT (σT ) = 0, Thus,

for W to be robust to this deviation, it must be that

UT (W, µT , σ
T ) = u(cT (σT ))− e+ β

[
µTπHUT+1(σT , w,H) + (1− µT )πLUT+1(σT , w, L)+

+ (1− π(µT ))UT+1(σT , u)
]

UT (W, µT , σ
T ) ≥ u(cT (σT )) + βUT+1(σT , u)

Since (IC, T ) is binding by assumption, it holds

UT (W, µT , σ
T ) = u(cT (σT )) + βUT+1(σT , u), UT+1(σT , w)− UT+1(σT , u) =

e

βπ(µT )
> 0

and then, for µ > µT ,

UT (W, µ, σT )− βUT+1(W, µ, (σT , u)) =

=u(cT (σT ))− e+ βπ(µ)
[
UT+1(W, (σT , w))− UT+1(W, (σT , u))

]
>

>u(cT (σT ))− e+ βπ(µT )
[
UT+1(W, (σT , w))− UT+1(W, (σT , u))

]
=

=UT (W, µT , σ
T )− βUT+1(W, µT , (σ

T , u))

which proves (34) for t = T .

Induction Step (t ≤ T − 1)
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First, notice that

Ut(W, µt, σ
t) = u(ct(σ

t)) + βUt+1(W, µt, σ
t+1)

=⇒− e+ βπ(µt)
[
Ut+1(W, (σt, w))− Ut(W, µt+1, σ

t+1)
]

= β
[
Ut+1(W, µt, σ

t+1)− Ut+1(W, µt+1, σ
t+1)

]
= β

[
− e+ βπ(µt)

(
Ut+2(W, (σt+1, w))− Ut+2(W, µt+1, σ

t+2
)]

=⇒Ut+1(W, (σt, w))− Ut+1(W, µt+1, σ
t+1) > β

[
Ut+2(W, (σt+1, w))− Ut+2(W, µt+1, σ

t+2)
]
(35)

where the equalities hold since (IC, t) and (IC, t+1) are binding. Now, by induction hypothesis,

∀µ : µ > µt+1,

Ut+1(W, µt+1, σ
t+1) = u(ct+1(σt+1)) + βUt+2(W, µt+1, σ

t+2)

=⇒Ut+1(W, µ, σt+1) ≥ u(ct+1(σt+1)) + βUt+2(W, µ, σt+2)

Therefore, take any µ > µt and

Ut(W, µt, σ
t)− βUt+1(W, µt, σ

t+1) = u(ct(σ
t))− βu(ct+1(σt+1))− e(1− β)+

+βπ(µt)
[
Ut+1(W, (σt, w))− βUt+2(W, (σt+1, w))

]
+ β(1− π(µt))

[
Ut+1(W, µut , σ

t+1)− βUt+2(W, µut , σ
t+2)

]
<

<u(ct(σ
t))− βu(ct+1(σt+1))− e(1− β)+

+βπ(µ)
[
Ut+1(W, (σt, w))− βUt+2(W, (σt+1, w))

]
+ β(1− π(µ))

[
Ut+1(W, µut , σ

t+1)− βUt+2(W, µut , σ
t+1)

]
<u(ct(σ

t))− βu(ct+1(σt+1))− e(1− β)+

+βπ(µ)
[
Ut+1(W, (σt, w))− βUt+2(W, (σt+1, w))

]
+ β(1− π(µ))

[
Ut+1(W, µu, σt+1)− βUt+2(W, µu, σt+2)

]
=Ut(W, µ, σt)− βUt+1(W, µ, σt+1)

where the first inequality follows from (35) above, as π(µ) > π(µt), while the second inequality

follows from induction hypothesis. I can thus conclude that (34) holds also for t.

I now pass to the proof of the main part of the proposition, that is, that binding IC constraints is

a sufficient condition to account for all possible deviations occurring from t onward. By induction

hypothesis,W satisfies all (IC, s)Ts=t with equality, and that guarantees robustness to all possible

deviations over histories in α\σt+1, i.e.

Ut+1(W, µt+1, σ
t+1) ≥ Ut+1((c,a′)(α\σt+1), µt+1, σ

t+1), ∀ a′(α\σt+1) ∈ At+1(α\σt+1)
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What it is to show is that W is robust also to all possible deviations in α\σt, i.e.

Ut(W, µt, σ
t) ≥ Ut((c,a′)(α\σt), µt, σt), ∀ a′(α\σt) ∈ At(α\σt)

First of all, notice that At(α\σt) = {0, e} ×At+1(α\σt+1) can be decomposed into:

• all effort histories with positive effort in t, i.e. Ae = At(α\σt) ∩ {at(σt) = e};

• all effort histories with zero effort in t, i.e. A0 = At(α\σt) ∩ {at(σt) = 0};

Second, assumption on robustness to any a′(α\σt+1) ∈ At+1(α\σt+1) guarantees robustness

ofW to the first set of deviations Ae, since µt+1 = µt(1−πH)
1−π(µt)

= µut . Indeed, pick any a′(α\σt) ∈ Ae.

Then, it follows

Ut(W, µt, σ
t) = u(ct(σ

t))− e+ β
[
π(µt)Ut+1(W, µwt , (σ

t, w)) + (1− π(µt))Ut+1(W, µut , σ
t+1)

]
≥u(ct(σ

t))− e+ β
[
π(µt)Ut+1(W, µwt , (σ

t, w)) + (1− π(µt))Ut+1(W ′, µut , σt+1)
]

= Ut(W ′, µt, σt)

where the inequality follows from robustness to a′(α\σt+1) ∈ At+1(α\σt+1).

What is left to show is robustness ofW to A0. By assumption, (IC, t) and (IC, t+1) are binding,

which means that

Ut(W, µt, σ
t) = Ut((c, ã)(α\σt), µt, σt) = Ut((c, â)(α\σt), µt, σt) (36)

with â(α\σt) = (0, e1k), ã(α\σt) = (e, 0, e1k−1). Define W̃ = (c, ã)(α\σt) and Ŵ = (c, â)(α\σt).

Thus, by construction

Ut+2(W̃, µut , σ
t+2) = Ut+2(Ŵ, µut , σ

t+2) (37)

Indeed, both alternative strategies prescribe to set effort cost to 0 either at stage t or t+ 1 (but

not both), and therefore the expectation at node σt+2 = (σt, u, u) is equal to µut under both

strategies. Moreover, they prescribe positive effort forever after, until the last period T .

Pick any a′(α\σt) ∈ A0. There are two possibilities: a′t+1(σt+1) = e or a′t+1(σt+1) = 0. If the

first case applies, consider the alternative deviation strategy a′′(α\σt) ∈ Ae so constructed:

a′′t (σ
t) = e, a′′t+1(σt+1) = 0, a′′(α\σt+2) = a′(α\σt+2)

Likewise, define W ′ = (c,a′)(α\σt) and W ′′ = (c,a′′)(α\σt). Hence, by construction,

Ut+2(W ′, µut , σt+2) = Ut+2(W ′′, µut , σt+2) (38)
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for the same reason as in (37), and

Ut(W ′, µt, σt) = Ut(Ŵ, µt, σ
t) + β2(1− π(µt))

[
Ut+2(W ′, µut , σt+2)− Ut+2(Ŵ, µut , σ

t+2)
]

Ut(W ′′, µt, σt) = Ut(W̃, µt, σ
t) + β2(1− π(µt))

[
Ut+2(W ′′, µut , σt+2)− Ut+2(W̃, µut , σ

t+2)
]

which follows from the fact that W ′ is identical to Ŵ in periods t and t+ 1, and the same holds

true for W ′′ and W̃.

One can easily see that the RHS of the two equations are equal, by (36), (37) and (38), which

causes also the LHS to be equal

Ut(W ′, µt, σt) = Ut(W ′′, µt, σt)

But then, given that W is robust to any alternative strategy in Ae,

a′′(α\σt) ∈ Ae =⇒ Ut(W, µt, σ
t) ≥ Ut(W ′′, µt, σt) = Ut(W ′, µt, σt)

proving that W is robust to a′(α\σt), too.

Now, consider the case where a′(σt+1) = 0 and the strategies â and ã defined as above, and also

ä(α\σt) = (0, 0, e1k−1). I first show that

Ut(W, µt, σ
t) ≥ Ut(Ẅ, µt, σ

t)

under the assumption of (IC, t) being binding

Ut(W, µt, σ
t) = Ut(Ŵ, µt, σ

t) = u(ct(σ
t)) + βUt+1(Ŵ, µt, σ

t+1)

which boils down to prove that

Ut+1(Ŵ, µt, σ
t+1) ≥ Ut+1(Ẅ, µt, σ

t+1) = u(ct+1(σt+1)) + βUt+2(Ẅ, µt, σ
t+2)

=⇒ Ut+1(W, µt, σ
t+1) ≥ u(ct+1(σt+1)) + βUt+2(W, µt, σ

t+2) (39)

where the first inequality follows from the fact that both strategies prescribe no effort in t, and

the second inequality follows from the fact that Ŵ = W (resp., Ẅ = W) over α\t + 1 (resp.,

α\t+ 2). By assumption, (IC, t+ 1) is binding

Ut+1(W, µut , σ
t+1) = u(ct+1) + βUt+2(W, µut , σ

t+2)

which, jointly with (34) and since µut < µt, causes (39). Now, a′ and ä prescribe the same action

68



in periods t and t+1. Therefore, in order to prove thatW is robust against a′(α\σt), it is enough

to show that

Ut+2(W, µt, σ
t+2) = Ut+2(Ẅ, µt, σ

t+2) ≥ Ut+2(W ′, µt, σt+2) (40)

Now, there are two possibilities, a′t+2(σt+2) can either be 0 or e. If the first case occurs, in order

to prove (40) it is enough to show

Ut+3(W, µt, σ
t+3) ≥ Ut+3(W ′, µt, σt+3) (41)

Indeed, (IC, t+ 2) binding and (34) jointly cause

Ut+2(W, µt, σ
t+2) ≥ u(ct+2(σt+2)) + βUt+3(W, µt, σ

t+3)

On the other hand, if a′t+2(σt+2) = e, then

Ut+2(W̆, µt, σ
t+2) = u(ct+2(σt+2))− e+ β

[
π(µt)Ut+3(W, (σt+2, w)) + (1− π(µt))Ut+3(W̆, µut , σ

t+3)
]
,

W̆ = {W,W ′}

But then proving (40) boils down to show (41). I have just established the following implication

Uj+1(W, µ′j+1, σ
j+1) ≥ Uj+1(W ′, µ′j+1, σ

j+1) =⇒ Uj(W, µ′j , σ
j) ≥ Uj(W ′, µ′j , σj), ∀j : t ≤ j ≤ T

where µ′j is the expectation in period j if strategy a′ is applied. But then the proof is complete,

as

UT+1(W, µ′T+1, σ
T+1) = UT+1(W, σT+1) = UT+1(W ′, µ′T+1, σ

T+1) =⇒ Ut(W, µ′t, σ
j) ≥ Ut(W ′, µ′t, σt)

�

Lemma 5 proves to be useful in light of the following result.

Lemma 6. In optimum, all (IC, s)Ts=0 constraints are binding.

Proof. By contradiction, assume that W = (c,a)(α\σ0) is optimum and that (IC, t) is slack

Ut(W, µt, σ
t) > u(ct(σ

t)) + βUt+1(W, µt, (σ
t, u))
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Then there exists ε > 0 such that
c′t+1(σt, w) = ct+1(σt, w)− ε

Ut(W ′, µt, σt) = u(ct(σ
t)) + βUt+1(W ′, µt, σt+1)

where W ′ = (c′,a)(α\σ0) is defined as

c′s(σ
s) = cs(σ

s), ∀σs 6= (σt, w), c′t+1(σt, w) = ct+1(σt, w)− ε

Now, G’s payoff is larger under W ′ than under W, as payment to W in history (σt, w) is

lower in the former case. Moreover, by Lemma 5, W ′ is also feasible, since it satisfies all (IC,

s)Ts=0 constraints with equality. But this contradicts that W is optimum. �

Thus, robustness against all one-shot deviations from the prescribed effort sequence consti-

tutes a necessary condition for a contract to be optimum (by Lemma 6) and sufficient one for

it to be robust against any multiple deviation (by Lemma 5). Therefore, focusing on the set of

contracts with such characteristic is without loss of generality.
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