Cassandra’s Curse:
A Second Tragedy of the Commons*

Philippe Colo ¹
¹University of Duisburg-Essen

30th Nov, 2021

Abstract

This paper studies why scientific forecasts regarding exceptional or rare events generally fail to trigger adequate public response. A major example is climate change: despite years of scientific reporting, public acceptance of economic regulations is still limited. Building on the main causes identified by surveys for these reluctances, this paper offers an explanatory mechanism for this paradox. I consider a game of contribution to a public bad: greenhouse gases emissions. Prior to that, contributors receive expert advice regarding climate damages. Because of climate science’s complexity, experts’ forecasts are non-verifiable. In addition, I assume that the expert cares only about social welfare. Under mild assumptions, I show that no information transmission can happen at equilibrium when the number of contributors is high or the severity of climate damages is low. Then, contributors ignore scientific reports and act solely upon their prior belief.

Keywords : Contribution to a public bad, Cheap talk, Climate change

*I thank Loïc Berger, Valentina Bossetti, Adrien Fabre, Arnaud Goushaillé, Frédéric Koessler, Hélène Ollivier, Marco Ottaviani, Jean-Marc Tallon and Stéphane Zuber for helpful discussions. I also thank seminar and conference participants at PSE (TOM, SRE), Bocconi, SAET 2019 and FAERE 2021 as well as Bocconi University and ETH Zurich for their hospitality. Financial support through ANR CHOp (ANR-17-CE26-0003), ANR ADE (ANR-18-ORAR-0005-01), ANR INDUCED (ANR-17-CE03-0008) and EUR PGSE is gratefully acknowledged.
In the Greek mythology, Cassandra was a Trojan princess cursed by Apollo to utter true prophecies, but never to be believed. Many times, she advised her fellow Trojans to be wary of the Greeks. But despite her warnings, her brother, prince Paris, would bring back the beautiful Helen to Troy, starting a war that would be fatal to the city. And despite her warnings, Trojans would accept the wooden horse, gifted by the Greek, that would end the conflict. From our perspective, it may seem obvious that Trojans should have listened to Cassandra. But by the time her prophecies were made, were they really wrong to ignore it?

Consider the case of the arrival of Helen. Assume Cassandra cares about the good of all Trojans. Paris, for his part, also worries about the fulfilment of his love for Helen. Because the presence of Helen poses a threat to the survival of the city, there is always a difference in motives between Cassandra and him. So, when Cassandra announces that she has foreseen that this arrival will trigger war with the Greeks, Paris will be reluctant to send away his fiancé. For him, even if Cassandra is right, his love for Helen is probably worth a war. Would Cassandra anticipate Paris’ reaction, she would have an incentive to effectively transform the truth and exaggerate the consequences of Helen’s arrival. Because Paris is aware of that, if Cassandra chooses to say the truth, he will assume she is exaggerating and ignore her warning.

In fact, Cassandra’s lack of credibility goes beyond the sole Paris. Most male Trojans are mesmerised by Helen’s beauty and enjoy her presence in the city. Because of that, their interest is misaligned with the good of Troy as a whole—that is, including women and children which may be less keen in waging war for the beauty of a foreign queen. If Cassandra pledges for the necessity of a return of Helen to Sparta, Trojan males will, just like Paris, consider she is over-reacting. In the words of modern game theory, for Cassandra, convincing the Trojans of what she has foreseen is impossible at equilibrium.

In this paper I show that at equilibrium Cassandras are not only unable to convey the truth to Trojans, but any information at all. Whatever their claims, they will be ignored when it comes to decision. This result is all the more striking if one considers that in practice Cassandra says the truth about what she knows. The strength of the theoretical analysis is to reveal that, because of the strategic setting, these truthful claims will be perceived as non-credible by her audience.

Sadly, climate scientists are nowadays Cassandras. For decades, there has been scientific consensus on human responsibility regarding global warming. Considerable effort and international coordination has been devoted to raising awareness on the negative consequences of green house gases (GHG) emissions on the environment, a task most famously embodied by the Intergovernmental Panel on Climate Change’s (IPCC) creation in 1988. Yet, multiple studies have reported that despite
climate change being an important and widespread concern in the general population (Whitmarsh and Capstick, 2018), there is still strong resistance against concrete political measures such as carbon pricing.¹ Like Cassandra, climate scientist generally say the truth about what they know. This paper’s main contribution is to show that because of the strategic setting, their claims are mostly ignored when it comes to concrete decisions.

The argument made here goes beyond the case of climate change. Cassandra’s curse roots in the source of her knowledge: premonition. For her audience, the credibility of her claims relies entirely on the confidence they have in her. They cannot be verified through logic or perception. Cases like these, where knowledge relies solely on testimony, typically arise in the face of exceptional and rare events. Situations such as a global pandemic of a new kind or the massive use of a vaccine relying on unprecedented technologies are good examples. Everett et al. (2021) argue that because the COVID-19 crisis was such an unexpected event, compliance to sanitary recommendations has mostly been determined by the degree of trust populations had in their leaders. In the same vein, for a layman, mRNA vaccines are a technology of a new kind. Their reliability cannot be assessed from the layman’s past experience of standard vaccination. Hornsey et al. (2020) show that the sudden increase in distrust regarding vaccination is then explained the best by a distrust in political and pharmaceutical actors. In the remaining of the paper, I focus on the example of climate change.

Of course, in the examples I have mentioned, counter-acting mechanism which allow for some transmission of information are also at play. Yet in the remaining of this paper, in order to better understand the mechanism I focuse on, I will consider the extreme case where scientific information is solely provided through non-certifiable communication.

Multiple empirical studies have been conducted to understand why scientific forecasts regarding climate change fail to trigger strong public willingness for its mitigation. Free-riding on climate mitigation or the fear of others behaving so is generally the most common explanation captured by surveys (Fischer et al., 2011). As argued by Halady and Rao (2010), this aspect is made even worse by the presence of uncertainty regarding climate damages.

The complexity of climate science is a second element often put forward by empirical work. Sterman (2008) famously showed how hard it is for MIT students to draw a causal link between the multiple potential causes of climate change and their consequences. In the same vein, Lorenzoni and Pidgeon (2006) survey a large sample of citizens in Europe and the USA and show that most people have limited knowledge over climate change and mostly relate to it through trust in experts.

¹For instance, see Maestre-Andrés et al. (2019) or Douenne and Fabre (2020) for an empirical review of the determinants of carbon pricing political acceptability.
For most of us, the consequences of our actions on climate change is simply too complex to assess. Lack of trust in scientists and information providers is a third aspect which can explain reluctance to carbon reducing measures. This can be due to normative reasons. Gabel et al. (2021) show that American conservatives display less confidence in science than liberals because scientists are believed to prioritise regulation over individual freedom. Ehret et al. (2018) and Van Boven et al. (2018) also provide evidence on how distrust for climate science can emerge from political partisanship and perceived normative misalignment.

In this paper, I combine these three aspects in a theoretical model to show why science, despite years of public communication over the upcoming climate catastrophe, struggles to trigger public desire for strong regulations.

First, to account for the free-riding aspect of climate change, I consider a game of contribution to a public bad, GHG emissions, where there is uncertainty over damages resulting from global warming. Contributors benefit from emissions to the extent that consumption goods depend on carbon-intensive energies to be produced, but expose themselves to potential climate damages. I will only assume that the marginal disutility caused by emissions is higher than its marginal benefit. I focus on the equilibrium level of emissions as a measure of the consumption level the public is ready to accept.

Second, before choosing their emission levels, contributors receive advice from an expert regarding climate risk. Yet, the information she provides is not verifiable by contributors. This assumption captures the fact that climate science is too complex to be seen as verifiable information for the general public. Although scientific results regarding climate change are well established for scientists, for non-scientists the knowledge needed to understand the supporting evidence is simply too vast. The most striking examples certainly are black box prospective computer simulations over which the estimation of the effects of GHG on global temperature heavily rely. As pointed out by Pidgeon and Fischhoff (2011), even for scientists whose disciplines use observational methods, black box simulations are true to their name. They can hardly be considered as convincing evidence.

Third, to capture the normative differences between expert and layman, I assume that the former is known to be benevolent and to aim for the utilitarian socially optimal level of emissions. Because of the free-riding effect in the contribution game, under perfect information, there is always a difference between the expert’s ideal level of emission and the equilibrium one. This leads to a difference in normative objectives between the expert, who aims for social welfare, and the contributors, who aim for their own individual good. In the context of this game, this difference naturally leads to a lack of trust in science.
Overall, the game I consider is a game of cheap-talk communication where an expert publicly addresses multiple contributors to a public bad. There are two main results. First, I show that when the number of contributors is high enough, whatever the severity of climate damages, no information transmission can happen at equilibrium. As a result, scientific information is ignored and emission levels are chosen solely on the contributors’ prior. Second, I show that even when the number of contributors is low, when the severity of climate damages is low enough, the previous result extends and no information transmission can happen at equilibrium.

This result constitutes a second *tragedy of the commons*. Even though the contributors would still over-emit, social welfare would be higher if the expert was able to reveal her information. Would she accommodate with the decentralised outcome, she would be able to do so. Then, contributors inefficiency would lead to a well-known drop in welfare, compared to the first best situation, which has been designated as the tragedy of the commons. But the expert’s aim for efficiency makes her a Cassandra and prevents information transmission. As a result, contributors must choose under full uncertainty, which leads to a second drop in welfare compared to the first best situation.

Related literature— The choice of emission levels is in the tradition of the canonical public good game of Bergstrom et al. (1986). An important characteristic of games of contribution to a public good (or bad), once one introduces uncertainty, is that more information does not always increase social welfare.\(^2\) In the context of games of information transmission, this observation is the driving force to understand equilibrium behaviour. Asheim (2010) was the first to study information transmission in the context of public good games. In his model, a benevolent environmental agency can certify information over climate risk to the contributors. He shows that full revelation is not always optimal for the environmental agency. In the same vein, Kakeu and Johnson (2018) study information exchange between privately informed countries in a model of transnational pollution. Information transmission is certifiable but costly. They show that sharing information is only incentive compatible under sufficiently precise private information. Slechten (2020) finds similar results regarding the role of (certifiable) information sharing regarding abatement costs prior to an environmental agreement. Only when uncertainty is high enough is information transmission through the use of a mechanism desirable for participants. The results of the present paper are in line with the general idea conveyed by this literature: because information transmission does not always have positive value in games of contribution to a public good, at least some communication might not occur at equilibrium.

This paper is also the first to introduce non-certifiable information in the context of climate

\(^2\)See Angeletos and Pavan (2007) for a more systematic review of games where information can have negative value.
policies. It thus relates to the literature on non-certifiable strategic communication, starting with Crawford and Sobel (1982)’s cheap-talk model with one sender and one receiver. Goltsman and Pavlov (2008) study cheap talk with public and private communication with multiple receivers. Yet, unlike in my paper, receivers’ actions do not affect each other. Interaction among receivers after the communication phase is a novelty of the paper, although Galeotti et al. (2013) had studied cheap-talk communication in the context of networks, where multiple imperfectly informed senders are also decision-makers and can influence each other both by their actions and messages. A second theoretical novelty introduced by the paper is to provide a characterisation result in the context of a cheap-talk game where the misalignment between parties is not linear, as generally assumed in applications.

Section 1 introduces the base model. Section 2 solves the game of contribution to a public bad for any given message of the informed party. Section 3 establishes when no information can be communicated by the sender at equilibrium and discusses the welfare implications. Section 4 extends the results to more general assumptions.

1 Setup

I consider a game between a scientific authority acting as a sender S (she) and N receivers (he) R_i having to choose a level of GHG emissions $e_i \geq 0$. The set of possible actions for each receiver is thus $\mathcal{A} = \mathbb{R}^+$. Receiver i benefits from his emissions through consumption but suffers from the overall emission level. In addition, for a given level of total GHG emissions, there is uncertainty on the severity of damages suffered by receivers. Let $\Omega = [a, b]$, where $b > a > 0$, represent the possible warming potentials of GHG emissions\(^3\), where climate damages are increasing with ω. I will refer to them as the states. The scientific authority S learns the state from Nature, but cannot certify her information. She can send a costless message $m \in \mathcal{M}$, where \mathcal{M} in a non-degenerate interval of \mathbb{R}, to the receivers indicating what the state might be. The timing of the game is as follows:

1. Nature draws the state $\tilde{\omega}$ according to a uniform distribution over Ω of density g.
2. S is privately informed of $\tilde{\omega}$ which becomes her type.

\(^3\)This is often referred to as the climate sensitivity parameter in climate science. Uncertainty over it has been extensively discussed (Meinshausen et al., 2009).
3. **Communication stage:** the sender sends a message to the receivers regarding her type.

4. **Emission stage:** the receivers choose simultaneously a level of emissions e_i

Receiver i’s utility function will be as follows:

\[u_i(e_i, e_{-i}, \omega) = e_i - \frac{\omega}{\beta} \sum_{i=1}^{N} e_i^\beta \]

where $\beta > 1$ parametrises the severity of climate damages. Thus, individual GHG emissions linearly benefit receivers but their overall level negatively impacts them in a convex way. In addition, the higher ω, the more severe the consequences of global warming and the greater the cost of emissions. Thus, receivers’ emission choice is the result of a trade-off between economic growth and potential damages created by global warming. Whatever $\omega \in \Omega$ and $e_1, ..., e_N \in \mathbb{R}^+$ u_i is concave. Because $a > 0$, even when $\omega = a$ strictly positive emissions will result in damages, translating the fact that in no state global warming is avoidable. Notice also that utility functions are single-peaked. As a result, for a given state, there is a single optimal emission level $e_i(\omega)$. A higher emission level $e > e_i(\omega)$ is not optimal for i because it might create too much climate damage. A lower emission level $e < e_i(\omega)$ is neither optimal for i as it implies too much economic growth by too much. Finally, notice that receiver i does not take into account the impact of his emissions on other receivers. To the contrary, the sender accounts for the externalities in receivers behaviour and seeks to maximise social welfare. Her ex-post utility is:

\[u_S(e_1, ..., e_N, \omega) = \sum_{j=1}^{N} u_j(e_j, e_{-j}, \omega) = \sum_{j=1}^{N} e_j - \frac{N \omega}{\beta} \sum_{j=1}^{N} e_j^\beta \]

A strategy for S is $\sigma : \Omega \to \mathcal{M}$ which consists in transmitting a message m to the receivers regarding her private information. A strategy for a receiver consists in choosing an emission level as a function of message m. In the following I will focus on perfect bayesian equilibria. An equilibrium consists in a signalling strategy $\sigma(\omega)$ and an action rule for each receiver $y_1(m), ..., y_N(m)$ such that
1. S chooses a strategy σ such that for all $m \in M$:

$$u_S(y_1(\sigma(\omega)), ..., y_N(\sigma(\omega)), \omega)) \geq u_S(y_1(m), ..., y_N(m), \omega)$$

2. Having received an equilibrium public message $m \in supp(\sigma)$, R_i updates his prior using Bayes’ rule such that:

$$g(\omega|m) = \begin{cases} \frac{g(\omega)}{\int_{\sigma^{-1}(m)} g(\omega) d\omega} & \text{if } \omega \in \sigma^{-1}(m) \\ 0 & \text{if not} \end{cases}$$

and chooses action $y_i(m)$, such that for all $e \in A$:

$$E(u_i(y_i(m), y_{-i}(m), \omega)|m) \geq E(u_i(e, y_{-i}(m), \omega)|m)$$

where $E(u_i(e_i, e_{-i}, \omega)|m) = \int_{\omega \in \Omega} g(\omega|m)u_i(e_i, e_{-i}, \omega)d\omega$. Any message m such that $m \notin supp(\sigma)$ is interpreted as some equilibrium message $m^* \in supp(\sigma)$.

2 Emission stage

I start by focusing on the emission stage. Consider any message $m \in M$ and for any $i \in 1, ..., N$, set $e_i(m)$ the solution to the maximisation problem:

$$\max_{e_i \in \mathbb{R}^+} E(u_i(e_i, e_{-i}(m)|m)$$

$e_i(m)$ is thus the equilibrium level of emissions of receiver i having received message m. First order condition gives that the equilibrium level of emission of receiver i must be such that:
\[e_i(m) = \frac{1}{\mathbb{E}(\omega|m)^{\frac{1}{\beta-1}}} \]

As emission levels are symmetric, in the following I will focus on the total level of emissions. Thus, for any given equilibrium message \(m \), the equilibrium total emission level of the receivers is:

\[t(m) = \frac{N}{\mathbb{E}(\omega|m)^{\frac{1}{\beta-1}}} \quad (1) \]

Similarly, for any \(i \in 1, \ldots, N \), set \(e_i^W(m) \) the solution to the maximisation problem:

\[\max_{e_i^W \in \mathbb{R}^+} \sum_{i=1}^{N} \mathbb{E}(u_i(e_i^W, e_{-i}^W(m), \omega)|m) \]

\(e_i^W(m) \) is thus the socially optimal level of emissions of receiver \(i \) having received message \(m \). As before, I will restrict attention to \(t^W(m) \), the socially optimal total level of emissions. First order condition gives that the socially optimal total level of emissions of the receivers must be such that:

\[t^W(m) = \sum_{i=1}^{N} e_i^W(m) = \frac{N}{(N\mathbb{E}(\omega|m))^{\frac{1}{\beta-1}}} \]

Thus, notice that whatever the message \(m \in \mathcal{M} \), we have that:

\[t^W(m) = \frac{1}{N^{\frac{1}{\beta-1}}} t(m) \quad (2) \]

When \(N = 1 \) sender and receivers have exactly the same utility function and aim for the same total level of emissions. Yet when \(N > 1 \), emission levels are always higher in the non-cooperative
equilibrium than what would be socially optimal: \(t^W(m) < t(m) \). The greater the number of inefficient receivers \(N \), the greater that difference. In the following, I will denote \(t^W(B) \) and \(t(B) \), for \(B \) a subset of \(\Omega \), the socially optimal and decentralised levels of emission under the belief that \(\tilde{\omega} \in B \). To avoid confusions, I will assume that \(M \) and \(\Omega \) are disjoint. By a slight abuse of notation, I will write \(t^W(\omega) \) and \(t(\omega) \) when \(B \) is a singleton.

3 Communication stage

Failure of communication in large societies— I now turn to the communication stage and state the paper’s first main result. It provides sufficient condition for no information transmission to be possible at equilibrium.

Theorem 1. For \(\beta > 1 \), if \(N \geq \frac{1}{2}(1 + \frac{b}{a}) \) then no information transmission is possible at equilibrium. For any \(\omega \in \Omega \) and any message \(m \in M \):

\[
g(\omega|m) = g(\omega)
\]

When the damage function is strictly convex and that the number of receivers is large enough, no information transmission is possible at equilibrium. When \(N \geq \frac{1}{2}(1 + \frac{b}{a}) \), I say the sender faces a large society. Thus, Theorem 1 states that in large societies, whatever the state that the sender learns, no message has the power of changing the receivers’ belief. Notice that what defines a society as large depends on the support of receiver’s belief. If there is a strictly positive probability that damages are low (that is, if \(a \) is close to 0), even with two receivers information transmission is impossible. To the contrary, if the support of the receiver belief is wide (that is, if \(b \) is much greater than \(a \)), the number of receiver must be larger for information transmission to be impossible.

To see where this result comes from let us first focus on the nature of the strategic interaction between the sender and the receivers in the communication stage. The sender and the receivers are engaged in cheap-talk communication. The sender cares only about the total emission level of the receivers. As equation (2) shows, under perfect information, as long as \(N \geq 2 \), there is always a difference between what the sender would like to see as the total emission level of the receivers and what they would do. Combined with the fact that S’s utility functions is continuous and single
peaked this observation suffice to show the following result.

Proposition 1. There can only be a finite number of equilibrium in the communication stage. All of them are partitional.

In order to understand this result, let us first define what a partitional equilibrium is:

Definition 1. Consider \(\{\omega_0, ..., \omega_q\} \subseteq [a, b] \) such that:

- \(a = \omega_0 < ... < \omega_q = b \) where \(\omega_k \), for \(0 \leq k \leq q \), is called the \(k \)-th cut-off.
- \(\cup_{k=1}^q [\omega_{k-1}, \omega_k] = [a, b] \), where \([\omega_{k-1}, \omega_k) \), for \(1 \leq k < q – 1 \), is called the \(k \)-th cell and \([\omega_{q-1}, 1] \) the \(q \)-th cell.

A \(q \)-cut-off partition equilibrium is an equilibrium of the game where the signalling strategy of \(S \) is uniform on every cell. That is, for \(\omega \in [\omega_{k-1}, \omega_k) \), \(\sigma^*(\omega) = m_k \), for \(1 \leq k \leq q – 1 \) and for \(\omega \in [\omega_{q-1}, 1] \), \(\sigma^*(\omega) = m_{q-1} \).

Figure 1 illustrates the structure of a partitional signalling strategy. In this example, any type of sender in \([a, \omega_1] \) sends message \(m_0 \in M \) and any type of sender in \([\omega_1, \omega_2] \) sends message \(m_1 \in M \) and any type of sender in \([\omega_2, b] \) sends message \(m_2 \in M \). In principal, multiple equilibria can exist, each of which is characterised by its cut-off types. There is always at least a 1-cut-off equilibrium where all types send the same message (and the cut-off then is \(\omega_1 = b \)). Because this equilibrium is uninformative, this equilibrium is called the babbling equilibrium.

![Figure 1: Partitional signalling strategy](image)

Thus, a consequence of proposition 1 is that information transmission is always imprecise. As a result, the sender can never fully reveal her type, although some information transmission is still possible through the partitioning of \(\Omega \). For this to be possible, it must be that there are adjacent intervals of types (cells) separated by a cut-off type where all types on one side prefer separating themselves of the types on the other side. Figure 2 illustrates how this may happen. An essential assumption for this to be possible is again that the utility function of the sender is single peaked.
Therefore, there can be a type (ω_k in figure 2) which is exactly indifferent between signalling himself as being part of the cell below (by sending message m_{k-1} and triggering $t(m_{k-1})$ emissions) and above him (by sending message m_k and triggering $t(m_k)$ emissions). In addition, because optimal actions are strictly increasing with the type, it must be that all types above this cut-off strictly prefer distinguishing themselves of the types below it and vice versa.

![Figure 2: Identifying cut-off ω_k for $\beta = 2$](image)

Thus, for there to be an informative equilibrium strategy of the sender, it must be that there is $\omega_0 \in (a, b)$ such that a sender of type ω_0 is indifferent between signalling himself as being part of the cell below and above him. For this to be the case, because the sender’s preferences are single peaked, a necessary condition is that:

$$t([\omega_0, b]) \leq t^W(\omega_0)$$

That is, would the sender credibly signal that the state is above a given threshold ω_0, it must at least be that the resulting emissions are below the socially optimal level at that threshold. Yet, this condition is equivalent to:
\[
\frac{N}{(\frac{\omega_0 + b}{2})^{\frac{1}{\beta - 1}}} \leq \frac{N}{(N\omega_0)^{\frac{1}{\beta - 1}}}
\]
\[\iff \omega_0 \leq \frac{b}{2N - 1}\]

Yet, it must also be that \(\omega_0 \in (a, b)\). As a result, a sufficient condition for \(\omega_0\) not to be a cut-off is:

\[
\frac{b}{2N - 1} \leq a
\]
\[\iff N \geq \frac{1}{2}(1 + \frac{b}{a})\]

which gives Theorem 1. Notice that the severity of climate damages \(\beta\) played no role in the analysis, apart of the assumption that \(\beta > 1\).

Failure of communication for small societies and low damages— In large societies, no information transmission is possible at equilibrium. In the following I show that even when the number of receivers is low enough, information transmission can still be impossible.

Theorem 2. When \(\beta \leq 2\), for \(N \geq 2\), no information transmission can happen at equilibrium. For any \(\omega \in \Omega\) and any message \(m \in \mathcal{M}\):

\[g(\omega|m) = g(\omega)\]

To understand this result, first, consider the case where \(\beta = 2\). For there to be at least a two cut-off equilibrium strategy it must be that there is \(\omega_0 \in (a, b)\) such that a sender of type \(\omega_0\) is indifferent between signalling himself as being part of the cell below (by sending message \(m^-\) and triggering \(t(m^-)\) emissions) and above (by sending message \(m^+\) and triggering \(t(m^+)\) emissions) him. When \(\beta = 2\), for the sender to be indifferent between two aggregate emission levels, it must be that they are at equal distance of his optimal action. Formally, there must be \(\omega_0 \in (a, b)\) such that:
\[t^W(\omega_0) = \frac{t(m^-) + t(m^+)}{2} \]

Yet, the resolution of the above equation in the proof of Theorem 2 gives that for any \(\omega_0 \in (a, b) \), \(t^W(\omega_0) < \frac{t(m^-) + t(m^+)}{2} \). Intuitively, whatever the state, quadratic damages are too low to trigger emissions levels that are low enough to meet the sender’s credibility constraint. Thus, when \(\beta = 2 \), there is no two cut-off equilibrium. In the case where \(\beta < 2 \), damages are even lower than when \(\beta = 2 \). As a result, it is not surprising that in no state an informative signalling strategy triggers emissions levels that are low enough to meet the sender’s credibility constraint.

Risk prudence— By varying the level the severity of climate damages \(\beta \) as we have been doing until here, one has to notice that we are implicitly changing the level of risk prudence of receivers. To see this, notice that:

\[\frac{\partial^3 u_i(e_i, e_{-i}, \omega)}{\partial e_i^3} = -\omega(\beta - 1)(\beta - 2)e_i^{\beta - 3} \]

which leads to the following remark:

Remark 1. Receivers display risk prudence if and only if \(1 < \beta < 2 \).

In my setting, risk prudence characterises the fact that receivers prefer an additional risk in optimistic states (closer to \(a \)) than in pessimistic ones (close to \(b \)). Compared to the case where \(\beta \geq 2 \), risk prudence will thus get receivers to increase their level of emissions under message \(m^- \) but to reduce it under message \(m^+ \). A second reading of Theorem 2 is thus that risk prudence necessarily leads to failure of communication, whatever the number of contributors.

Welfare analysis— It is well known that under perfect information, because receivers fail to internalise the consequences of their actions on others, the overall level of emission is inefficient at equilibrium. This situation corresponds to the case where the sender could accommodate herself of the decentralised outcome and not aim for social welfare. That is, if for any \(\omega \in \Omega \), \(t^W(\omega) = t(\omega) \) we would have that the expected social welfare is:
Consider the case where damages are low ($\beta \leq 2$) or that society is large ($N \geq \frac{1}{2}(1 + \frac{b}{a})$). When the sender aims for social welfare and that, for any $\omega \in \Omega$, $tW(\omega) < t(\omega)$, we have that the expected social welfare is:

$$W(\beta) = \int_a^b \int_a^b t(\omega')d\omega' - \omega N \left(\frac{\int_a^b t(\omega')d\omega'}{N} \right)^\beta d\omega$$

Yet, because for $\beta > 1$, $t \rightarrow t^\beta$ is a strictly convex function, we also have that:

$$\int_a^b t(\omega')^\beta d\omega' > \left(\int_a^b t(\omega')d\omega' \right)^\beta$$

It immediately follows that for any $\beta > 1$: $W(\beta) < W_R(\beta)$. That is, because of uncertainty, the expected welfare when the sender aims for the socially optimal level of emissions is lower than we she can accommodate with the decentralised level. We thus get the following result:

Proposition 2. When $\beta \leq 2$ or $N \geq \frac{1}{2}(1 + \frac{b}{a})$, the expected social welfare of the game is lower when the expert is benevolent than if she would aim for the decentralised outcome.

Arguably, this situation can be called a second tragedy of the commons. It is the result of a difference in incentives for the sender between the ex-ante perspective and the interim one. Before learning the state (ex-ante), the sender knows she is better-off under full revelation than under cheap-talk. If she could commit to conveying her information at that moment, she would. Yet, once she learns her type (interim), the difference between the socially optimal level of emissions and the equilibrium one is such that even the most optimistic types don’t have an incentive to separate themselves from the others. In other words, with no other argument in support of her good faith than her incentives, no informed sender is capable to convey information, leaving the receivers under full uncertainty. The convexity of the damage function then implies that the latter
situation is strictly worst than the former for social welfare.

4 Extensions

How general are the results presented until here? In the following I discuss how some of the assumptions I have made can be relaxed and how they would affect the result.

The role of the prior—Clearly, the assumption of a uniform prior over Ω has been made for computational convenience. Although it has an influence on the main result, I claim this influence is limited. To see this, consider two extreme cases: the one of an extremely optimistic prior of full support but where almost all the probability mass concentrates towards the lower bound of Ω and the symmetric case of an extremely pessimistic prior.4

Intuitively, the optimistic case is even worse for communication than the one with uniform prior. This is because, for any given message, optimal actions of the receivers are shifted to the right, compared to the uniform prior case, while, for any state, the optimal action for the sender is lower than the equilibrium one. As before consider the 2 cut-off partitional strategy σ where the interior cut-off is ω_0. In the limit of the optimistic prior, we have that m^+ induces action $t(\omega_0)$. Yet we have that:

$$t(\omega_0) > t^W(\omega_0)$$

making it impossible for ω_0 to be a cut-off type.

To the contrary, the pessimistic case should favour communication. In the limit case of maximal pessimism, m^+ induces action $t(b)$. For ω_0 to be a cut-off type, it must at least be that:

4For instance take a normal distribution truncated over Ω of mean a and of arbitrary small variance for the optimistic case and a normal distribution truncated over Ω of mean b and of arbitrary small variance for the pessimistic one.
Thus, a sufficient condition for no information transmission to be possible is \(N > \frac{b}{a} \). In other words, a prior leading to a more prudent total emission level than the uniform one favours the possibility of information transmission between parties. Yet, as before, when societies are large enough, no information transmission is possible.

In the case of small societies, consider the case \(\beta = 2 \). For \(\omega_0 \) to be a cut-off type it must be that:

\[
\begin{align*}
t_W(\omega_0) &= \frac{t(\omega_0) + t(b)}{2} \\
\iff \frac{1}{N\omega_0} &= \frac{1}{2} \left(\frac{1}{\omega_0} + \frac{1}{b} \right) \\
\iff \omega_0 &= b\left(\frac{2}{N} - 1 \right)
\end{align*}
\]

This time the condition \(\omega_0 \in (a, b) \) is met if and only if \(N < \frac{2b}{a+b} \). Thus, when \(N \geq 2 \), no information transmission is possible, whatever the support of the receiver’s prior.

Concave benefits for emissions— Although I have allowed for varying degrees of convexity in the damage function of the receivers, I have retained the assumption that the benefits of emissions are linear. This is because what matters for the result is the degree of convexity of the costs relative to the benefits of emissions. To see this consider the more general utility function of the receiver:

\[
u_i(e_i, e_{-i}, \omega) = \frac{1}{\delta_1} e_i - \frac{\omega}{\delta_2} \sum_{i=1}^{N} e_i^{\delta_2}
\]

where \(\delta_1 \geq 1 \) and \(\frac{1}{\delta_1} < \delta_2 \). One can check that \(u_i \) is always a concave in \(e_i \).
Then, given any message $m \in \mathcal{M}$, the decentralised level of emissions is:

$$t_i(m) = \frac{N}{\mathbb{E}(\omega|m)^{\frac{\delta_1}{\beta}}^{\frac{1}{\beta-1}}}$$

Thus, one can identify β to $\delta_2 - \frac{1}{\delta_1} + 1$ to obtain the same optimal action as before and verify, given the assumptions made on δ_1 and δ_2, that $\beta > 1$. As before, we have that for any message $m \in \mathcal{M}$:

$$t^W(m) = \frac{1}{N^{\frac{1}{\beta-1}}} t(m)$$

As a result, the computation of the potential cut-offs will be the same as before and will, thus, not affect the main results.

Heterogeneous receivers—I have assumed that all receivers had the same utility function. A natural question is whether my results extend to the case where receivers have heterogeneous preferences. Consider the alternative utility function of receiver i:

$$u_i(e_i, e_{-i}, \omega) = \gamma_i e_i - \frac{\omega}{\beta} \sum_{i=1}^{N} e_i^{\beta}$$

where $\gamma_i > 0$. Here, the socially optimal emission level for R_i, given any message $m \in \mathcal{M}$, becomes:

$$e_{i}^W(m) = \frac{\gamma_i}{(N\mathbb{E}(\omega|m))^{\frac{1}{\beta-1}}}$$

Thus, in general, the aims of the sender are not only on the total emission level as before, but on each receiver’s individual emission level. In other words, the action variable is now a vector...
of length N. Formally proving that my result are still true when receivers have heterogeneous preferences is above the scope of this paper. Yet, it has been shown by Goltsman and Pavlov (2008) (Proposition 2) that, in the case of linear biases, communication with two receivers with biases b_1, b_2 is equivalent to communication with a single representative receiver of bias $\frac{b_1 + b_2}{2}$. One may conjecture that the same may happen in the context of this paper with the communication stage being equivalent to a one sender one receiver game played between a representative receiver whose optimal total emission level under message $m \in \mathcal{M}$ is $t(m) = N \sum_{i=1}^{N} \alpha_i e_i(m)$, where $\sum_{i=1}^{N} \alpha_i = 1$ and $\alpha_i \in [0, 1]$ for all $i \in 1, ..., N$, and a representative sender whose optimal total emission level in state $\omega \in \Omega$ is $t^W(\omega) = N \sum_{i=1}^{N} \alpha_i e^W_i(\omega)$. If this is the case, it is easy to see that this paper’s main results would be maintained. Utility functions with linear biases can be seen as reasonable approximations of the ones used here.
5 Conclusion

Despite the large scientific consensus about the anthropogenic origin of climate change, despite widespread concern regarding global warming in many countries population, public willingness to act is still far from sufficient to trigger changes at the appropriate level. Empirical evidences have brought to light free-riding behaviours, climate science complexity and mistrust in science among the main explanatory factors for this paradox. This paper offers a theoretical construction to explain how, put together, these three aspects block information transmission from science to society. Because of science’s complexity, information is treated as non certifiable. And because public authorities care about social welfare, when communicating with large societies or when damages are low, non of this information can be conveyed in a credible way. Therefor, scientific information is simply ignored by contributors who act solely upon their prior. This result appears as a second tragedy of the commons. Not only is the public bad over-provided, even under perfect information. This over-provision is also responsible for the absence of information transmission, leading to uninformed and thus even less optimal contribution decisions.

The doom of Cassandra is a persistent curse. In the face or exceptional and rare events, public knowledge relies much more on the word of informed parties than in any form of direct understanding. Because public communication regarding the COVID-19 pandemic, the resulting massive vaccination campaign or climate change addresses a large population, my model offers an explanation to why it fails to trigger adequate public response. Yet differences can appear if one considers cases of smaller groups. In the climate example, the range of possible climate sensitivity parameters is broad and the severity of potential climate damages is high. Both aspects favour the possibility of some information transmission to a small group of contributors. Conversely, in the COVID-19 vaccination example, if the vaccination rate is too low, negative consequences are relatively clear to predict. In other words, the spread of possible consequence is not too important. In addition, compared to the climate case, the absolute value of the marginal cost of a low vaccination rate is also closer to its marginal benefit. The two latter observations favour situations where information transmission is impossible, even to a small group.
Appendix

Proof of Proposition 1:

As the socially optimal emission level of each receiver is the same, one can identify the sender’s utility function to \(u_S(t, \omega) = t - \frac{\omega}{N^2 - 2} t^2 \) where \(t \) is the total emission level of receivers.

The proof is structured as follows: first, I show that the number of aggregate energy consumption levels of the receivers induced at equilibrium is finite (lemma 1). Then, I prove that the set of types which get the same equilibrium outcome must form an interval. The continuity and the strict monotonocity of the sender’s preferences closes the argument.

Lemma 1. There exists \(\epsilon > 0 \) such that if \(u \) and \(v \) are actions induced in equilibrium, \(|u - v| \geq \epsilon \). Further the set of aggregate energy consumption levels induced in equilibrium is finite.

Proof of Lemma 1

I say that action \(u \) is induced by an S-type \(\omega \) if it is a best response to a given equilibrium message \(m : u \in \{ t(\omega) | \omega \in \sigma^{-1}(m) \} \). Let \(Y \) be the set of all actions induced by some S-type \(\omega \). First, notice that if \(\omega \) induces \(\bar{t} \), it must be that \(u_S(\bar{t}, \omega) = \max_{t \in Y} u_S(t, \omega) \). Since \(u_S \) is strictly concave, it can take on a given value for at most two values of \(t \). Thus, \(\omega \) can induce no more than two levels of aggregate emission level of the receivers in equilibrium.

Let \(u \) and \(v \) be two levels of aggregate emissions induced in equilibrium, \(u < v \). Define \(\Theta_u \) the set of S types who induce \(u \) and \(\Theta_v \) the set of S types who induce \(v \). Take \(\omega \in \Theta_u \) and \(\omega' \in \Theta_v \). By definition, \(\omega \) reveals a weak preference for \(u \) over \(v \) and \(\omega' \) reveals a weak preference for \(v \) over \(u \) that is:

\[
\begin{align*}
 u_S(u, \omega) &\geq u_S(v, \omega) \\
u_S(v, \omega') &\geq u_S(u, \omega')
\end{align*}
\]

Thus, by continuity of \(\omega \rightarrow u_S(u, \omega) - u_S(v, \omega) \), there is \(\hat{\omega} \in [\omega, \omega'] \) such that \(u_S(u, \hat{\omega}) = u_S(v, \hat{\omega}) \). Since \(u_S \) is strictly concave, we have that:
\[
\begin{align*}
 u &< t^W(\hat{\omega}) < v
\end{align*}
\]

Then, notice that since \(\frac{\partial^2 u_S(t,\omega)}{\partial t \partial \omega} > 0 \), it must be that all types that induce \(u \) are below \(\hat{\omega} \). Similarly, it must be that all types that induce \(v \) are above \(\hat{\omega} \). That is:

\[
\forall \omega \in \Theta_u, \omega \leq \hat{\omega} \\
\forall \omega \in \Theta_v, \omega \geq \hat{\omega}
\]

Given that \(u_i \), for \(i \in 1,\ldots,N \), verify the assumptions of Crawford and Sobel (1982), the sum of optimal action of the receivers, given that \(\omega \in \Theta_u \) is below the optimal action when the type is \(\hat{\omega} \). Similarly, the sum of optimal actions of the receivers, given that \(\omega \in \Theta_v \) is above the optimal action when the type is \(\hat{\omega} \). That is:

\[
\begin{cases}
t(\Theta_u) \leq t(\hat{\omega}) \\
t(\Theta_v) \geq t(\hat{\omega})
\end{cases} \iff u \leq t(\hat{\omega}) \leq v
\]

However, as \(t(\omega) \neq t^W(\omega) \) for all \(\omega \in \Omega \), there is \(\epsilon > 0 \) such that \(|t(\omega) - t^W(\omega)| \geq \epsilon \) for all \(\omega \in \Omega \). It follows that \(|u - v| \geq \epsilon \).

For any belief \(B \subset \Omega \), the sum of optimal action of the receivers is in \(\left[\frac{N}{k^{a+1}}, \frac{N}{a^{a+1}} \right] \). Thus, the set of actions induced in equilibrium is bounded and at least \(\epsilon \) away from one another, which completes the proof.

\[\square \]

Notice also that because \(u_S \) verifies all the requirement of Crawford and Sobel (1982), in every equilibrium of the game, if \(t \) is a level of aggregate emissions induced by type \(\omega \) and by type \(\omega' \) for
some $\omega < \omega''$, then t is also induced by $\omega' \in (\omega, \omega'')$.

By Lemma 1 there is a finite number of outcomes induced in equilibrium. The continuity of $t^W(\omega)$ gives that there is a type of the sender which is indifferent between any pair of outcomes induced in equilibrium and the monotony of $t^W(\omega)$ implies there are only a finite number of types which are indifferent between any pair of outcomes. Hence, the point made just above implies that there is a partitioning of Ω in a finite number of cells where every cell induces a given level of aggregate emissions at equilibrium. This implies that any equilibrium is a partition equilibrium.

\[\square \]

Proof of Theorem 2:

First consider the case where $\beta = 2$. Then:

\[t^W(\omega_0) = \frac{t(m^-) + t(m^+)}{2} \]

\[\iff \frac{1}{4N\omega_0} = \frac{1}{\omega_0 + a} + \frac{1}{b + \omega_0} \]

Define:

\[f : \omega_0 \rightarrow \frac{1}{\omega_0 + a} + \frac{1}{b + \omega_0} - \frac{1}{4N\omega_0} \]

The situation where there are only two receivers, $N = 2$, is the situation where potential communication is the easiest to sustain. Then, the only positive candidate cut-off type is:

\[f(\omega_0) = 0 \]

\[\iff \omega_0 = \frac{1}{30}(\sqrt{49a^2 + 158ab + 49b^2} - 7a - 7b) \]
Yet, \(\frac{1}{360}(\sqrt{49a^2 + 158ab + 49b^2} - 7a - 7b) < a \), for any \(b > a > 0 \). Notice that for \(\omega_0 \in (a,b) \), \(f \) is strictly positive.

Because the sub-game played in the communication stage is a special case of the game studied by Crawford and Sobel (1982), by applying their Theorem 1 it follows that if the is no cut-off equilibrium, the only equilibrium is the babbling one.

Now consider the case where \(\beta < 2 \). As figure 3 illustrates, the marginal disutility of under-emitting is greater than the one of over-emitting. Intuitively, the optimal action of the sender at a cut-off type \((t^W(\omega_0)) \) has to be closer to the one induced by revealing his above that threshold \((t(m^+)) \) than below \((t(m^-)) \).

![Figure 3: Identifying cut-off \(\omega_0 \) for \(\beta = 1.1 \)](image)

Thus, when the sender is indifferent between \(t(m^-) \) and \(t(m^+) \), it must be that there is \(\alpha(\beta) \in (0,1) \) such that:

\[
t^W(\omega_0) = \alpha(\beta)t(m^-) + (1 - \alpha(\beta))t(m^+)
\]

Lemma 2 establishes that \(\alpha(\beta) \) is an decreasing function of \(\beta \).

Lemma 2. \(\alpha(\beta) \) is an decreasing function of \(\beta \)
Proof of Lemma 2:

For any given state ω, take $A^- < t^W(\omega) < A^+$ such that $u_S(A^-, \omega) = u_S(A^+, \omega)$.

For the utility level $u_S(A^-, \omega) = u_S(A^+, \omega)$, we have that:

$$\alpha(\beta) = \frac{t^W - A^-}{A^+ - A^-}$$

Take the tangent equation between A^- and t^W that gives that $u_S(A^-, \omega) = u_S(t^W, \omega) - \frac{\partial u_S(A^-, \omega)}{\partial t}(t^W - A^-)$. We then get that:

$$\alpha(\beta) = \frac{1}{A^+ - A^-} \times (u_S(t^W, \omega) - u_S(A^-, \omega)) \times \frac{1}{\frac{\partial u_S(A^-, \omega)}{\partial t}}$$

$\frac{1}{A^+ - A^-}$ is constant in β. Because u_S is concave, $\frac{\partial u_S(A^-, \omega)}{\partial t}$ is decreasing with β and $u_S(t^W, \omega) - u_S(A^-, \omega)$ is decreasing in β. It follows that $\frac{1}{\frac{\partial u_S(A^-, \omega)}{\partial t}}$ is decreasing in β. As a result $\alpha(\beta)$ is decreasing in β.

As $\beta = 2$, $\alpha(\beta) = \frac{1}{2}$, Lemma 2 gives that $\beta < 2 \Rightarrow \alpha(\beta) \geq \frac{1}{2}$. Thus to prove that there can not be a 3 cut-off equilibrium when $\beta < 2$ it is sufficient to show that for any $\omega_0 \in (a, b)$:

$$t^W(\omega_0) < \frac{t(m^-) + t(m^+)}{2}$$

$$\iff \left(\frac{1}{2N\omega_0} \right)^{\beta^{-1}} < \frac{1}{2} \left[\left(\frac{1}{\omega_0 + a} \right)^{\beta^{-1}} + \left(\frac{1}{b + \omega_0} \right)^{\beta^{-1}} \right]$$

$$\iff \frac{1}{2N\omega_0} < \left(\frac{1}{2} \left[\left(\frac{1}{\omega_0 + a} \right)^{\beta^{-1}} + \left(\frac{1}{b + \omega_0} \right)^{\beta^{-1}} \right] \right)^{\beta^{-1}}$$

Yet, when $1 < \beta < 2$, $t \to t^{\beta^{-1}}$ is a strictly concave and increasing function, we also have that:
\[
\left(\frac{1}{2}\left[\left(\frac{1}{\omega_0 + a}\right)^{\frac{1}{\beta-1}} + \left(\frac{1}{b + \omega_0}\right)^{\frac{1}{\beta-1}} \right] \right)^{\beta-1} \geq \frac{1}{2}\left[\frac{1}{\omega_0 + a} + \frac{1}{b + \omega_0} \right]
\]

Yet, the case $\beta = 2$ gave us that for $\omega_0 \in (a, b)$:

\[
\frac{1}{4\omega_0} < \frac{1}{2}\left[\frac{1}{\omega_0 + a} + \frac{1}{b + \omega_0} \right]
\]

It follows that necessarily, for $\omega_0 \in (a, b)$:

\[
t_W(\omega_0) < \frac{t(m^-) + t(m^+)}{2}
\]

which concludes the proof.

\[\square\]
References

