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Abstract

Should air quality policies target industries within the largest cities? On the one hand,

we should seek to reduce atmospheric pollutants’ emissions in places where most of the

population is concentrated. On the other hand, more stringent policies can hurt local

industries and targeting the cities that contribute the most economically may decrease

welfare. Extending recent quantitative spatial economics models, I analyze these coun-

teracting forces. I find that when the local damages from pollution are not internalized

by the industry and workers react to low air quality through migration, the largest cities

can be too small. As a result, an optimal set of policies imposes higher emission taxes in

these locations relative to the rest of the country. I estimate the model using French data

and find that current policies impose higher costs of emissions in larger cities but raising

them even higher could achieve welfare gains.
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1 Introduction

It is now widely acknowledged that atmospheric pollution causes substantial damage to
human health.1 Yet, most people live in large cities that also concentrate polluting indus-
tries. Recognizing this, governments have adopted air quality regulations that that are more
stringent in large and populated cities. However, more stringent regulations can hurt lo-
cal firms, make them less productive, and, in turn, affect local workers’ income. This local
tradeoff between income and pollution raises the question of whether environmental regu-
lations should be different across heterogeneous locations. This question requires a theory
of the location choice of workers and heterogeneous firms that endogenizes local air pollu-
tion as an externality from production. In this paper, I develop such a theory and explore
what would be an optimal distribution of polluting activities across space in the context of
France.

I first use this framework to find the set of policies that implements an optimal allo-
cation of workers, firms, and pollution across cities. Within this framework, location choices
made by individual firms and workers depend on (1) the level of amenities offered by cities,
(2) agglomeration externalities that provide a productivity advantage to firms located in
more populated areas, and (3) congestion forces. Local concentration of atmospheric pollu-
tants act as a congestion force by decreasing the city-specific amenity level. Workers respond
to bad air quality by moving away from it. Firms, by contrast, only internalize the negative
externalities associated with their polluting emissions insofar as they have to pay a local
city-specific tax on emissions. They do not internalize their impact on local labor supply
that responds to the decrease in amenity level associated with bad air quality. I thus show
that the largest cities, endowed with the highest level of exogenous amenities and produc-
tivities, are too small when the emission tax is uniform across space. An optimal set of
city-specific pollution taxes should include higher taxes in large cities to make industrial
production cleaner, air quality better, and these cities more attractive to workers.2 Second, I
explore quantitatively what would be this optimal set of city-specific pollution taxes in the
context of France and compare it to the estimated current regulations on industrial emis-
sions. I find that current regulations are differentiated across space in the right direction –
they are more stringent in larger cities – but welfare could increase by raising pollution taxes
in larger cities even more.

In the model, a discrete number of cities in a single country differ in terms of idiosyn-
cratic exogenous endowments in local amenities and industrial labor productivity. Workers

1Health damage have been measured even when pollution levels fall below regulatory standards
(Graff Zivin & Neidell, 2012, 2013; Deryugina et al., 2019).

2To be able to compare sets of city-specific pollution taxes, I keep the average tax level across cities constant
across alternative sets. In doing so, I focus only on the effects of spatially differentiated emission taxes, not on
the welfare impacts of raising tax levels.
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derive utility from local amenities and from the consumption of an industrial tradable com-
posite good. Following Rosen (1979)-Roback (1982), I assume that a given population of
homogenous industrial workers choose to locate in different cities in equilibrium. In each
city, continuums of heterogenous firms from distinct industrial sectors produce differenti-
ated varieties that aggregate into the composite good. As in Copeland & Taylor (2004), firms
use labor and polluting emissions as substitutable inputs for production.3 Production costs
thus depend on local wages, local labor productivity, and local emission taxes. Furthermore,
firms face iceberg trade costs when exporting their varieties to other cities. As is standard in
economic geography models, the model includes two externalities related to the allocation
of workers across space. First, local labor productivity is endogenous and reflects agglomer-
ation economies: when the number of worker increases in a city, so does labor productivity.
Second, local welfare is influenced by general congestion effects: as local population in-
creases, congestion appears on the housing market and in transportation, which reduces
each worker’s welfare.4 Furthermore, workers are assumed to move freely across cities.5

The novelty of the paper rests on the assumption that the total quantity of industrial
emissions per city negatively affects city-specific amenity level, using a constant elasticity
environmental damage function. Doing so, I consider polluting emissions as a congestion
force that affects workers’ location decision, and firms do not internalize this effect. In the
model, I consider for simplicity a representative pollutant that serves as an indicator of the
combination of harmful pollutants emitted by industrial activities (PM10, PM2.5 and SO2).
I further assume that this pollutant is essentially local in the sense that emissions only affect
local air quality within the city limits.6 I show that a central planner taking into account the
trade-off between agglomeration externalities and congestion forces decides to differentiate
local emission taxes by setting the relative level of tax in larger cities higher.

I apply this spatial equilibrium framework to the specific case of France. This empiri-
cal setting is interesting for three reasons. First, a large share of harmful pollutant emissions
result from industrial activities in France.7 Second, local air concentrations of pollutants
in several French cities often reach levels well above World Health Organization (WHO)’s

3Pollution can equivalently be modelled as an input or a by-product of industrial production in the stan-
dard Copeland & Taylor (2004)’s setup.

4This congestion effect potentially encompasses polluting emissions related to residential energy consump-
tion and transportation. Even though, I do not explicitly model these pollution sources, they affect welfare
negatively. I assume that these sectors are not covered by the emission tax on industrial pollution.

5The free mobility assumption leads to an equilibrium that is informative in the long run. In Appendix A.4,
I investigate the alternative assumption of no across-city migration, which is more informative in the short run.
Using the simplified setup of Section 2, I find that the main result holds when the central planner maximizes
the average per capita welfare of workers.

6In reality, air pollutants can potentially travel across space depending on climatic conditions (especially,
wind), some pollutants more than others. Since I consider commuting zones instead of cities in the empirical
application, the assumption is however quite realistic since most pollutants do not travel very far. Furthermore,
introducing an atmospheric circulation extension is outside of this paper’s scope.

7In 2012, industrial activities (fossil fuel combustion, chemical reactions, waste treatment or other man-
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guidelines.8 Third, air quality regulations implemented in the last decades in France tend to
be more stringent in larger cities, which are also more polluted and concentrate more indus-
trial polluting activities. Figure 1 illustrates salient stylized facts that I incorporated into the
model. The upper panel shows that the larger the number of workers within a French com-
muting zone, the higher the mean PM 2.5 concentration in 2012. The middle panel shows
that the most populated commuting zones are also the most polluting in terms of PM 2.5
emitted by industrial activities. The lower panel shows that local marginal cost of emitting
PM2.5 for industrial firms tend to increase with the size of the local labor market.9
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Figure 1: PM2.5 concentrations, emissions and marginal costs across commuting zones
Note: The upper panel plots the 2012 mean air concentration in PM2.5 at the commuting zone level as a function of the local number of
workers. The middle panel plots the 2012 PM2.5 emissions from industrial activities at the commuting zone level as a function of the local
number of workers. The lower panel plots the implicit marginal cost of emitting PM2.5 in the industry as a function of the local number
of workers. This cost is the ratio of total wage payments in the commuting zone over the quantity of PM2.5 emitted by the industry.
City-level PM2.5 air concentration is from Chimere. PM 2.5 industrial emissions are from the National Spatialized Inventory. Labor data comes from
the Insee and is a count of the number of workers employed in the employment area. All values are for 2012.

ufacturing processes) emitted around 40% of PM2.5 and SO2 national emissions and around 25% of PM10
national emissions (see Figure (12) and Tables (5), (6) and (7) for details).

8Figure (13) shows that, in 2012, both mean and maximum air concentration measurements from ground
monitors over the country for these substances have remained above WHO guidelines.

9Assuming that homogeneous firms in different cities have access to the same Cobb-Douglas production
function between labor and PM2.5 emissions (assumptions used in the illustrative model in Section 2), I com-
pute the marginal cost of PM2.5 emissions as the ratio of total wage payments over city-level PM2.5 emissions.
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Using an extensive set of city-level, firm-level, and plant-level data, I first estimate
the parameters of the model. I estimate key elasticities that determine the strength of pol-
lution externalities, agglomeration economies and general congestion effects. I also provide
novel estimates of sector-specific elasticities governing the substitution of emissions and la-
bor in industrial production, using an instrumental variable approach. Second, I retrieve the
distributions of amenities, productivities and emission taxes across cities from the observed
endogenous distributions of populations, wages and emissions. Doing so, I obtain the set of
current city-specific marginal costs of emitting atmospheric pollutants for industrial firms
implied by current French air pollution regulations. I find that these costs are higher in large
cities than in small cities. Specifically, these costs are higher in more productive cities, but
not necessarily in cities endowed with more amenities.

I then characterize the welfare implications of such spatial distribution of marginal
costs of emissions. I show that more stringent emission regulations in large cities enabled
them to reduce pollution emissions and become larger than what they would have been
under a counterfactual uniform regulation. This implies higher levels of welfare for workers
living in all cities. To go further, I then identify the spatial distribution of emission taxes that
would maximize workers’ welfare. It would be optimal to raise emission taxes in cities
with high amenities, leading to further concentration of workers in these cities, and thus
exacerbating the uneven distribution of activities across space.

This paper relates to several literatures. First, it contributes to the recent quantitative
spatial economics literature on the distribution of economics activities across space (Allen
& Arkolakis, 2014; Redding & Rossi-Hansberg, 2017; Redding, 2020; Allen et al., 2020). Ex-
tending the framework of Rosen (1979)-Roback (1982), this literature can be decomposed
into two main strands. The first one assumes that workers have heterogenous preferences
over amenities and studies mainly the location decision of workers across cities (Moretti,
2013; Diamond, 2016; Almagro & Domínguez-Iino, 2021). An influential paper in this litera-
ture is Diamond (2016) that endogenizes local amenities to explain the spatial distribution of
skilled and unskilled workers across U.S. cities. Diamond considers that these amenities are
positively influenced by the fraction of skilled over unskilled workers. In my paper, I also
introduce endogenous amenities affected by congestion forces, based on total population
levels, and by the pollution externality. The second strand assumes homogenous workers to
study the location decision of firms across cities and the optimal size of cities (Henderson,
1974; Eeckhout & Guner, 2015; Borck & Tabuchi, 2018; Gaubert, 2018; Albouy et al., 2019).
Focusing on the supply side of the economy, namely polluting industries, I make the same
assumption. In this block, Allen & Arkolakis (2014) and Allen et al. (2020) develop a spatial
quantitative model where characteristics of heterogeneous locations determine the equilib-
rium distribution of economic activity across space. They assume endogenous amenities and
agglomeration economies.10 Even though my model is an extension of these two papers, I

10In this respect, I include the “productivity advantage of large cities” that have been identified for France
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depart from them by focusing on a particular source of congestion externalities, namely local
air pollution, and investigate its effect on the spatial distribution of economic activities.

My paper is connected to a second literature that investigates the distribution of pol-
lution across cities (Glaeser & Kahn, 2010; Carozzi & Roth, 2019; Colmer et al., 2020; Borck
& Schrauth, 2021; Eeckhout & Hedtrich, 2021) and its congestion effects (Drut & Mahieux,
2015; Leturque & Sanch-Maritan, 2019; Hanlon, 2019). Carozzi & Roth (2019) and Borck &
Schrauth (2021) both show that denser cities are also more polluted (respectively for the US
and Germany). Similarly, Colmer et al. (2020) uncover large disparities in the spatial distri-
bution of PM2.5 concentration across census tracts in the US. In particular they find that in-
creasing local population leads to higher levels of ambient PM2.5 pollution. They also iden-
tify that pollution decreased in locations where regulation became more stringent (namely
census tracts in non-attainment with air quality standards). In my paper, I provide a frame-
work explaining such spatial distribution of pollution: my setup encompasses the effect of
local population, local income and local regulations on local emissions. Moreover, with a
focus on France, Drut & Mahieux (2015) and Leturque & Sanch-Maritan (2019) exposed that
agglomeration gains were dampened by the local levels of pollution. My framework in-
cludes this effect by assuming that local pollution actually acts as a congestion force. This
mechanism is supported by findings from Hanlon (2019) who showed for the UK that local
pollution industrial emissions reduced long-run city employment and population growth.
Damage from pollution also have been found to be heterogenous across space depending on
local characteristics (Aldeco et al., 2019; Deryugina et al., 2021; Desmet et al., 2021; Alvarez
& Rossi-Hansberg, 2021). The assumption of constant elasticity of damage from pollution
implicitly acknowledges this heterogeneity to the extent that large cities concentrate most of
welfare loss due to pollution.

Finally, my paper contributes to the literature on optimal place-based policies chosen
by a central planner. In particular, Fajgelbaum & Gaubert (2020) investigate how income
transfers across cities could maximize welfare by correcting spatial externalities, assuming
free mobility of workers across cities. Similarly, Suarez-Serrato & Zidar (2016) consider a
tax rate on firms’ profits that varies across cities. In contrast to these papers, I assume an
input-specific policy instrument that induces reallocation across inputs, therefore it affects
the endogenous amenity level per city through emissions. This place-based literature also
contains studies including endogenous pollution (Lange & Quaas, 2007; Kyriakopoulou &
Xepapadeas, 2013; Yamada, 2020; Pflüger, 2021). A paper closely related to mine is Yamada

by Combes et al. (2012) and more recently by Gaubert (2018). However, I do not make any assumption on
the source of these agglomeration economies. Notably, the model does not include any sorting mechanism
that may partly explain higher productivities observed in larger cities (Baldwin & Okubo, 2005; Combes et al.,
2008). Another source of agglomeration comes from the costly trade assumption. Recently Bartelme (2018)
showed that trade costs between US cities explained a large fraction of the spatial distribution of economic
output. At the same time, my model embodies general counteracting congestion forces which limit the scale
of economic concentration.
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(2020) that also considers atmospheric pollutants as a congestion force and shows that im-
posing more stringent air quality regulations in a specific set of large Chinese cities could
lead to welfare gains. In contrast to this paper, I solve for the optimal distribution of lo-
cal emission regulations instead of comparing ad-hoc distributions of policies inspired by
planned policy projects.

The remainder of the paper is organized as follows. In the next section, I provide
a simplified framework to illustrate how introducing a local pollution externality into the
standard spatial equilibrium model generates new insights. In the third section I provide
some context on air quality regulations in France. A more realistic general model is detailed
in the fourth section. The fifth section presents the estimation of the model’s parameters.
Finally, the last section contains results from numerical welfare optimization problems and
discusses the results.

2 Optimal Environmental Policy in a Simple Spatial Model

Following the Rosen (1979)-Roback (1982) framework, I consider a given set of C cities in
which a fixed population of workers can live. Throughout the paper, I assume homogenous
workers.11 The per capita utility of the representative worker in city j is given by:

uj = ajZ
−γ
j L−δj cj, (1)

where aj is the local idiosyncratic endowment in amenities, Lj is the local population of
workers, Zj is the quantity of atmospheric pollutants emitted by the local industry, and cj is
the local per capita consumption of a tradable good. This utility function captures the fact
that workers value the consumption of the tradable good, which depends on their income,
as well as other characteristics of the locations they live in. In this paper, I focus on the local
detrimental welfare effect of industrial emissions of atmospheric pollutants, as industrial
activities are major emitters of several harmful pollutants.12 In equation (1), a positive γ
implies that local industrial emissions Zj negatively affect the local air quality and therefore
welfare (through health damages). For simplicity, I abstract from spatial pollution spillovers
and assume that local emissions only affect local welfare. Workers also bear various ag-
glomeration costs, which are accounted for by the general congestion term L−δj . This cap-

11As shown in Allen & Arkolakis (2014), my choice for workers’ preferences is isomorphic to a model
where heterogeneous workers have idiosyncratic utility shocks, according to a Fréchet distribution, that are
independent and identically distributed across locations and individuals. Such heterogeneity across workers
is a dispersion force and is captured by the parameter δ in my model.

12In 2012, the industry emitted 40%, 42% and 23% of total PM2.5, SO2 and PM10 emissions, see Appendix
A.1.
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tures local externalities from agglomeration, such as commuting costs and housing prices.13

This general congestion term also captures the detrimental effect on welfare of atmospheric
pollution emitted by non-industrial activities (transport, residential heating, or energy pro-
duction). Furthermore, each city is exogenously endowed with a fixed level of amenities
aj that explains the location choices of local workers once spatial differences in consump-
tion and local externalities are accounted for. For instance, amenities include geographical
environmental attributes, available space, institutional and social installations or any local
external factor that explains why some locations are more attractive than others. Workers
benefit from agglomeration economies. I assume that labor productivity in location j is
equal to bjL

ν
j . Elasticity ν governs the strength of agglomeration economies and bj allows

for idiosyncratic labor productivity differences between cities. Idiosyncratic productivity
can vary across cities due to a wide array of local characteristics (better local institutions or
more efficient local transport networks). Among other things, agglomeration economies can
arise from local knowledge spillovers, labor markets pooling or local economies of scale.14

In each city, identical firms produce a homogenous tradable good using labor and
emissions of a representative atmospheric pollutant with a Cobb-Douglas production func-
tion defined by an expenditure share α, with 1 > α > 0. Following Copeland & Taylor
(2004), it is equivalent to assuming that, rather than being an input in production, emissions
are a by-product of production. Then, firms can divert a fraction of their labor force to abate
emissions. The efficiency of abatement is governed by α: the lower it is, the more efficient
the abatement technology is to reduce firms’ emission intensity. In location j, a unit of labor
costs the local wage wj and a unit of emissions costs the local emission tax tj . This emission
tax is a policy instrument set by a central planner. It represents the local pollution regula-
tions (including technology standards, emission limits, or emergency responses). I assume
that proceeds from the emission tax are locally redistributed to workers. These combined
assumptions lead to the equilibrium distribution of industrial emissions across cities (see
Appendix A.3 for computing details):

Zj = α
wj
tj
Lj. (2)

which illustrates that industries emit more pollution in cities that are larger, and where
wages are higher. Conversely, higher emission taxes reduce local emissions.

I assume that competition is perfect and trade is costless, which implies the spatial
equalization of the output price and leads to the equilibrium distribution of local wages.
Setting the average wage as the numeraire would add general equilibrium effects to the

13Allen & Arkolakis (2014) show that constant elasticity congestion costs are isomorphic to the Helpman
(1998)-Redding (2016) setup where workers spend a fixed share of their income on a non-tradable good, which
can include housing.

14Duranton & Puga (2004) provides a large range of models that deliver this constant elasticity func-
tion. Combes & Gobillon (2015) provides a survey of the empirical literature that documents agglomeration
economies.
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equilibrium: when regulation changes in a given city there would be spillovers on wages in
other cities. I abstract from such effects to focus only the interplay between agglomeration,
congestion, and industrial pollution externalities. Therefore, I normalize the output price
to 1. As a result, per capita consumption of the tradable good is equal to the local wage:
cj = wj . Output price normalization also pins down local wages in location j :

wj = bjL
ν
j t
− α

1−α
j , (3)

which implies that wages are higher in cities that are more productive and in cities that are
larger, because of agglomeration economies. It also implies that raising local emission taxes
has a negative effect on local wages.

Substituting for (2) and (3) in (1), the indirect utility in location j can be written as:

uj = ajb
1−γ
j L−θj t

γ−α
1−α
j , with θ = δ + γ − ν(1− γ). (4)

The exponent θ on the population term in equation (4) reflects the fact that, since γ > 0,
the emission externality both reinforces congestion and weakens agglomeration economies
(when cities grow, agglomeration economies increase local wages, and firms become more
pollution intensive).

Finally, I assume free mobility of workers across locations.15 As a result, utility is
equalized across space in equilibrium and is equal to a level denoted ū. To see this, imagine
two cities with distinct levels of welfare: workers living in the city with lower welfare have
an incentive to move to the city with higher welfare up to the point where the marginal gain
of moving is compensated by the marginal cost of congestion. Combining this assumption
with (4), we obtain, for two cities i and j:

Lj
Li

=

(
aj
ai

) 1
θ
(
bj
bi

) 1−γ
θ
(
tj
ti

) 1
θ
γ−α
1−α

, (5)

which implies that the distribution of workers across cities is a function of the distributions
of amenities, productivities, and emission taxes. Depending on the relative strengths of the
three externalities, local populations may be positively or negatively, correlated with these
local characteristics. Equation (5) also illustrates that there exists a unique spatial equilib-
rium if and only if θ 6= 0. This condition can be expressed as a condition on the elasticity
of the pollution externality: γ 6= − δ−ν

1+ν
. Assuming that pollution is a congestion force (i.e.

γ > 0), this condition ensures that the pollution externality does not exactly offset the com-
bined effect of general congestions effect and agglomeration economies. When congestion
effects strictly outweigh agglomeration economies, this condition always holds.

15This assumption is informative of long term equilibria, where within-country migration costs can be con-
sidered as low. In Appendix A.4, I consider for robustness the alternative assumption, where local populations
are fixed and do not adjust in equilibrium.
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Without any loss of generality, I normalize the total population to 1, so that
∑

j∈C Lj =

1, and compute the common level of welfare ū reached in equilibrium:

ū =

[∑
j∈C

a
1
θ
j b

1−γ
θ

j t
1
θ
γ−α
1−α

j

]θ
(6)

The optimal policy for a central planner is to maximize ū by adjusting the set of local
emission taxes across cities. In Appendix A.3, I show that 1 ≥ γ ≥ α and 1 ≥ 1

θ
γ−α
1−α are

necessary and sufficient conditions for ū to be concave and the optimization problem to
have a unique solution. First, 1 ≥ γ means that the positive direct effect of productivity
on wages outweighs its indirect negative effect that causes firms to become more pollution
intensive when wages increase. Second, α < γ means that the negative effect on wages of
raising the local emission tax is weaker than the positive effect it has on air quality. Third,
1 ≥ 1

θ
γ−α
1−α ensures that the whole population is not concentrated in a unique city. The welfare

function specified by equation (6) is homogeneous of degree γ−α
1−α with respect to the set of

emission taxes. This implies that, if I multiply all city level emission taxes by a common
factor, workers’ welfare ū is multiplied by a power γ−α

1−α of this factor. Therefore, I normalize
the average emission tax t̄ to 1 and focus on the distribution of taxes across cities.

Proposition. Consider a set of citiesC, with exogenous amenities {aj}j∈C and productivity {bj}j∈C ,
with relative populations specified in equation (5). If 1 ≥ γ > α and 1 > 1

θ
γ−α
1−α , there is a unique

set of emission taxes {t∗j} that maximizes the welfare function specified in equation (6) under the
constraint that t̄ = 1 and it is defined by:

t∗j
t∗i

=

[(
aj
ai

) 1
θ
(
bj
bj

) 1−γ
θ

] 1

1− 1
θ
γ−α
1−α

. (7)

Equation (7) indicates that the relationship between optimal emission taxes and local
characteristics depends on the sign of θ. In particular, θ > 0 means that congestion forces
outweigh agglomeration economies and more workers locate in cities with a higher level
of amenities and productivity (see equation (5)). In this case, equation (7) indicates that, to
maximize workers’ welfare, the central planner imposes higher emission taxes in cities with
a higher level of amenities and productivity.

An important implication of my model is that emission taxes should be heteroge-
neous across space. However, national governments usually enforce regulations that are
spatially uniform. Therefore, it is interesting to compare the implications of enforcing the
set of emission taxes described by (7) to the implications of enforcing a uniform set of emis-
sion taxes (each equal to 1). Denoting L∗j and Luj the populations of city j under the optimal
and uniform sets of emission taxes, equations (5) and (7) imply:

t∗j
t∗i

=
L∗j
L∗i

=

(
Luj
Luj

) 1

1− 1
θ
γ−α
1−α . (8)
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which means that if an optimal set of emission taxes exists, taxes should be higher in cities
that are larger when the tax is uniform. Moreover, the sufficient condition for an optimal set
of taxes to exist implies that 1

1− 1
θ
γ−α
1−α

> 1. As a result, equation (8) indicates that implement-
ing the optimal set of emission taxes reinforces the spatial concentration pattern observed
under uniform taxes. When congestion forces outweigh agglomeration forces and higher la-
bor productivity translates in higher income, it is optimal that more workers locate in cities
with high amenities and productivity endowments (to compensate the costs of agglomer-
ation). However, firms do not fully internalize the detrimental impact of their emissions
on local welfare and pollute too much in cities that could attract even more workers if they
were less polluted. This is why the optimal set of emission taxes imposes a relatively higher
marginal cost of polluting in these cities, compared to cities where it is not optimal to con-
centrate workers. As a result, firms in these cities are less emission intensive, which lowers
the level of emissions and makes these cities more attractive to workers.

The set of emission taxes described by equation (7) corrects all externalities, even the
ones that are not caused by industrial pollution emissions. To analyze the case where the
central planner corrects for these “non-emission” externalities using external policy instru-
ments, one can derive the optimal set of emission taxes when the emission externality is the
only externality. Assuming δ = ν = 0 in equation (7), the optimal set of emission taxes still
imposes higher emission costs in the same cities as in the case where all externalities are
corrected by the set of emission taxes.

Finally, equation (7) reveals that if there were no industrial emissions externality, that
is to say if γ = 0, the optimal set of emission taxes would still be non-uniform, to correct for
congestion and agglomeration externalities. In particular, when γ = 0, equation (7) leads
back to the standard result showing that large cities (with the highest productivities and
amenities) should be even larger (Eeckhout & Guner, 2015; Gaubert, 2018; Albouy et al.,
2019). Moreover, the average tax normalization imposes that increasing emission taxes in
large cities implies decreasing them in smaller cities. Equation (3) shows that it is equivalent
to decreasing wages in large cities and increasing them in small cities. This is similar to
the system of optimal income transfers identified by Fajgelbaum & Gaubert (2020) when
congestion costs outweigh agglomeration economies.

3 General Spatial Model

In this section I extend the model to (1) an industry composed of several polluting sectors, (2)
continuums of heterogeneous firms that compete monopolistically over differentiated vari-
eties, (3) costly trade between cities, and (4) general equilibrium effects from local changes
in emission taxes.
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3.1 Setup

The per capita utility of the representative worker in city j follows equation (1). The industry
is now composed of S distinct sectors and cj is the industrial composite:

cj =
∏
s∈S

(∑
i∈C

∫
ω∈Ωis

cijs(ω)
σs−1
σs dω

) σs
σs−1

βs

, (9)

with cijs(ω) the quantity of variety ω produced in city i and consumed in city j, Ωis the
continuum of varieties produced in sector s in city i, σs the elasticity of substitution between
varieties in sector s ∈ S, and βs the share of income spent on varieties from sector s by each
worker (with

∑
s∈S βs = 1). These parameters are assumed to be the same across cities.

The aggregated price index of the industrial good in city j, Pj is such that:

Pj =
∏
s∈S

P βs
js , and Pjs =

(∑
i∈C

∫
ω∈Ωis

pijs(ω)1−σsdω

) 1
1−σs

, (10)

with Pjs are city and sector specific price indices, and pijs(ω) the unit price of variety ω

produced in city i in sector s and consumed in city j. I assume that there are no friction on
local labor markets, so that that wages are equal across sectors of production. As a result,
per capita consumption of the tradable good is given by cj =

wj
Pj

and workers’ indirect utility
is:

uj = ajZ
−γ
j L−δj

wj
Pj
. (11)

In each city j there is an infinite supply of entrepreneurs in each sector s that can
choose to pay a fixed sector specific entry cost f es to draw a productivity φ from a Pareto
distribution Gjs:

Gjs(φ) = 1−
(
φ

bjs

)−θs
, (12)

with bjs = bjbsL
νs
j . These assumptions extend section 2’s assumptions of idiosyncratic labor

productivity and agglomeration economies to the case of multiple sectors and heteroge-
neous firms. In particular, the elasticities of agglomeration economies, {νs}s∈S , are sector
specific. In addition, idiosyncratic sector and city specific labor productivities {bjs}(j,s)∈C×S

are multiplicatively separable between idiosyncratic city specific productivities {bi}j∈C , that
are common across sectors, and sector specific productivities {bs}s∈S , that are common across
cities.

Each firm produces a specific variety of the industrial good using labor following the
function:

qijs(φ) = (1− a(φ))φlijs(φ) (13)

where qijs(φ) is the quantity produced by a firm of productivity φ in city i and sold on city j’s
market, and lijs(φ) is the quantity of labor used for production. Variable a(φ) corresponds to
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the fraction of the firm’s labor force used to abate emissions caused by production. Produc-
tion releases pollution as a by-product according to:

zijs(φ) = (1− a(φ))
1
αs φlijs(φ) (14)

where zijs(φ) is the quantity of the representative pollutant emitted by a firm of productivity
φ in city i for the production sold in city j. {αs}s∈S are the sector specific expenditure shares
on emissions. Heterogeneity in these parameters across cities accounts for the fact that some
industrial sectors may be more emission intensive than others. I assume that, in city j,
emissions are taxed by the central planner at a rate tj , which is the same across sectors.
Local proceeds from this tax are redistributed to local workers.

These production and pollution functions closely follows Copeland & Taylor (2004)
and Shapiro & Walker (2018) and are standard in the literature. Combining equations (13)
and (14) implies the following:

qijs(φ) = zijs(φ)αs (φlijs(φ))1−αs , (15)

which is a Cobb-Douglas function that combines two inputs: emissions and labor. As a
result, total industrial emissions of the representative pollutant, in city i, are given by:

Zi =
∑
s∈S

∑
j∈C

∫
φ

zijs(φ)dGis(φ) (16)

Trade is costly between cities. To export to city j, firms in city i have to pay an origin-
destination specific iceberg cost τij . As a result, any firm sells to all cities.16 Combining the
assumption of monopolistic competition with equations (9) and (15) implies that the unit
price of a variety produced in city i in sector s by a firm with productivity φ and delivered
in city j follows:

pijs(φ) =
σs

σs − 1

τijcis
φ1−αs

, with cis = καst
αs
i w

1−αs
i , (17)

and καs = α−αss (1 − αs)
−1+α. Revenues and profits of a firm with productivity φ in city i

respectively follow:

ris(φ) =
∑
j∈C

pijs(φ)qijs(φ), and πis(φ) = ris(φ)/σs. (18)

I assume that entrepreneurs enter production until their expected profits equal the
fixed entry cost of drawing a productivity from the local Pareto productivity distribution. I

16The model could be extended to accommodate for origin-destination fixed trade costs as in Shapiro &
Walker (2018). Productivity distributions of firms would then be left-truncated by endogenous zero-profit
productivity cutoffs. In this case, only the most productive firms in a given city would be selling goods in all
other cities.
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express fixed entry costs in the aggregate factor price, as in Bernard et al. (2007). Thus, for
each pair of city and sector, I have the free entry condition:∫

φ

πjs(φ)dGjs(φ) = cjsf
e
s . (19)

In equilibrium, goods markets clear for each city and sector pair so that workers’ ex-
penditures are equal to firms’ sales. These goods markets clearing conditions can be written
as:

P 1−σs
js = Ks

∑
i∈C

τ 1−σs
ij M̃is(t

αs
i w

1−αs
i )−σsb

(1−αs)(σs−1)
i L

νs(1−αs)(σs−1)
i , (20)

with M̃is = σs
βs
f esMiscis, and Mis the mass of firms that produce in sector s and city i in

equilibrium.

The local labor markets also clear in equilibrium, so that the sum of employment over
all sectors is equal to the local population. For each city j, it can be written as:

wjLj =
∑
s∈S

βsM̃js, (21)

which can be combined with equations (19) and (20) to show that, for any distribution of
population {Li}i∈C across cities, wages in city i follow:

wiLi =
∑
s∈S

βst
αsσs
i w

(1−αs)σs
i b

−(1−αs)(σs−1)
i L

−νs(1−αs)(σs−1)
i

×
∑
j∈C

µijs
wjLj∑

k∈C µkjst
αsσs
k w

(1−αs)σs
k b

−(1−αs)(σs−1)
k L

−νs(1−αs)(σs−1)
k

(22)

, where, for each sector s, µs = {µijs}(i,j)∈C2 are the terms of the inverse of the τ 1−σs , with
τ the iceberg trade costs matrix. Note that, as long as for any (i, j), τii < τij , and for any
s, σs > 1, τ 1−σs is strictly diagonally dominant. Therefore, it can be inverted under these
conditions. Equation (22) illustrates the general equilibrium mechanisms that are included
in this section: when the emission tax changes in city j, it affects wages in city j.

As in section 2, I assume free mobility and workers’ utility maximization. As a result,
welfare is the same across cities and equal to ū. From equation (1), free mobility implies that,
in each city j:

ajZ
−γ
j L−δj

wj
Pj

= ū. (23)

Finally, I assume that the total population of workers across cities is fixed and nor-
malize it to 1 without loss of generality, so that:∑

j∈C

Lj = 1, (24)
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which can be combined to equation (23) to show that:

Lj =

(
ajZ

−γ
j

wj
Pj

)1/δ

∑
i∈C

(
aiZ

−γ
i

wi
Pi

)1/δ
. (25)

Given equation (16), for any set of emission taxes and masses of firms in each sector,
emissions of pollution in city j follow:

Zj =
∑
s∈S

βsαs
M̃js

tj
, (26)

which, combined to equations (21), (22), and (25), implies that is an homogeneous function of
degree −1 with respect to the average level of emission taxes across cities. Similarly, wages
and population are homogeneous functions of degree zero with respect to the average level
of emission taxes across cities. Combining equations (10) and (10) implies that local price
indices are homogeneous functions of degree

∑
s∈S βsαs

σs
σs−1

with respect to the average level
of emission taxes across cities. As a result, equation (23) implies that workers’ welfare is a
homogeneous function of degree γ − ∑s∈S βsαs

σs
σs−1

with respect to the average level of
emission taxes across cities. Consequently, when investigating the central planner’s welfare
maximization problem, I focus on the distribution of emission taxes across cities and keep
the average emission tax to 1.

3.2 Equilibrium and Optimal Set of Emission Taxes

An equilibrium is defined as a set of populations {Lj}j∈C , wages {wj}j∈C , masses of in-
dustrial firms {Mjs}(j,s)∈C×S , price indices {Pjs}(j,s)∈C×S , and welfare ū, that solve the set of
free entry conditions (19), goods market clearing conditions (20), local labor markets clear-
ing condition (21), free mobility conditions (23), and national population clearing condition
(24). The equilibrium is identified, to the extent that the number of equations is equal to the
number of endogenous variables. As in section 2, I define the optimal set of emission taxes
as the set of taxes that maximizes workers’ welfare ū, under the constraint that the average
tax remains equal to 1. In this extended version of my model, there are no closed-form so-
lutions, neither for the equilibrium distributions of the endogenous variables, nor for the
set of emission taxes that solves the maximization problem. Therefore, I rely on numerical
methods to solve the model.
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4 Estimation of the Model

To perform a quantitative policy analysis, I take the model to the data. In particular, I con-
sider the set of French commuting zones as the set of cities in which workers live.17 This set
commuting zones constitutes a partition of the full French metropolitan territory and each
zone is defined statistically to be an area where local inhabitants both work and live. Using
this definition of cities, I estimate the parameters of the model presented in section 3. First,
I estimate equation (11) to retrieve elasticities γ and δ. Second, I use some of the model’s
predictions to estimate sector-specific expenditure shares {βs}s∈S , elasticities of substitution
{σs}s∈S , Pareto shape parameters {θs}s∈S , elasticities of agglomeration economies {νs}s∈S ,
and emission elasticities {αs}s∈S . Third, I compute a matrix of road travel time between
French commuting zones and use it as a proxy for the trade cost matrix. Finally, equipped
with this estimated model, I retrieve the model’s primitives – the level of amenities, produc-
tivity, and emission taxes – from data on the distribution of workers, wages, and industrial
PM2.5 emissions across cities in 2012.

4.1 Data

In this subsection, I describe the datasets used in the quantitative exercise. Firm-level datasets
come from confidential French administrative data. I use annual balance sheets and income
statements for the universe of French firms from 1994 to 2016 as reported in the FICUS
databases for 1994-2007 and in the FARE databases for subsequent years. A firm is identi-
fied by a stable administrative code called SIREN. The main variables of interest are total
sales, average employment (number of workers and total wages paid), location, and the
main sector of activity.

Plant-level information on energy consumption comes from the EACEI (Enquête An-
nuelle sur la Consommation d’Energie dans l’Industrie) surveys, which are available from 1994
to 2016. These surveys include all energy-related expenditures, with details on energy types
and fuels (quantity consumed and expenditures) at the plant level. The types of energies
reported are electricity (consumed and self-generated), steam, natural gas and other types
of gas, coal, lignite, coke, propane and butane, domestic and heavy fuels, oil and other types
of petroleum products. The surveys also provide the plant-level number of employees. The
surveys cover all large plants (over 20 employees) in the industrial sectors – with the excep-
tion of the power sector – and a subset of smaller plants (between 10 and 19 employees) that
is randomly selected each year. On average, between 8,000 and 11,000 plants are included
in the annual survey. I use these surveys to compute atmospheric emissions at the plant-
level. The Ominea database (CITEPA, 2020) provides emission factors that associate to each

17I use the 2010 definition of the French “zones d’emplois”.

16



fuel the corresponding amount of pollutants that are emitted. For each plant, I multiply the
amount of each fuel consumed by the corresponding emission factor and sum across fuels
to compute the total quantity of pollutant emitted. To ensure the validity of this approach, I
compute correlation between these constructed emission values and actual values declared
by large plants under the European directive and publicly available in the European Pollu-
tant Release & Transfer Register (E-PRTR) between 2003 and 2016.18 Table (8) in Appendix
A.5.1 displays Pearson correlation coefficients along with statistical significance. It appears
that my construction emissions values correlate well with the actual emissions of these large
plants.

To estimate γ, the elasticity of environmental damage from pollution, I use geographic
emissions from the Emissions Database for Global Atmospheric Research (EDGAR) from
the European Commission’s Joint Research Center (JRC). EDGAR provides annual gridded
emissions of atmospheric pollutants disaggregated across polluting sectors at 0.1x0.1 degree
resolution. Data is publicly available on the JRC’s dedicated website 19. Information on the
methodology can be found in Crippa et al. (2018). The benefit from using this dataset rather
that EACEI computed emission is that EDGAR aggregated values provide an exhaustive
picture of all emissions (while EACEI surveys only account for the largest plants). I use
EDGAR’s data from 2000 to 2015. I spatially aggregate it at the commuting zone level by
intersecting the EDGAR grid with official ESRI shapefiles for French municipalities aggre-
gated in commuting zones.

To retrieve the model’s primitives, I use a 2012 cross-section dataset of wages, labor,
and industrial PM2.5 emissions at the commuting zone level. For wages and labor, I use
data from the Insee’s website. For PM2.5 industrial emissions, I use the National Spatial
Inventory (INS) INS (2020). The INS is a publicly available dataset reporting emissions of
around 40 pollutants from natural and anthropogenic sources.20 The data is available at
the municipality level, which is a more disaggregated spatial unit than EDGAR’s grid cells.
However, data is only available for 2004, 2007, and 2012. Therefore, I use the INS only
to retrieve the model’s primitives, which are identified through cross-sectional variation,
and rely on EDGAR for the panel estimation. Precisely, I use PM2.5 emissions from the
manufacturing industry and from production processes. These corresponds to codes 3 and
4 in the Selected Nomenclature for Air Pollution.

18Although actual plant-level measures of atmospheric pollutants emissions are publicly available at the
plant level in the European Pollutant Release and Transfer Register (E-PRTR), it only includes the largest plants
resulting in a much restricted sample of industrial plants than the EACEI sample. Using the E-PRTR data
would not allow me to estimate sector-specific emission elasticities.

19https://edgar.jrc.ec.europa.eu/index.php/dataset_ap50
20http://emissions-air.developpement-durable.gouv.fr/index.html
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4.2 Estimation of Congestion and Pollution Damage Elasticities

Equation (11) can be re-written as a log-linear relationship between wages, utility, amenities,
price indices, local labor supply and emissions:

logwit = log uit − log ait + logPit + δ logLit + γ logZit. (27)

Introducing a time variable t, city i endowments in amenities and productivity may vary
over time (for instance, due to enhancements to local transport networks or to the creation
of museums, parks, etc.). Furthermore, given existing migration frictions, the assumption of
free mobility may not hold in the short term (from one year to another). Therefore, welfare
is potentially different across cities. In practice, I only observe wages, populations, and
emissions. Thus, I run the following equation:

logwit = δ logLit + γ logZit + χi + µt + εit. (28)

Year fixed effects µt eliminate annual shocks that are common to all cities. City fixed effects
χi absorb city-specific fixed characteristics. The error term εit corresponds to city-year spe-
cific shocks, including shocks to local amenities ait, local welfare uit, and local price indices
Pit. Equation (20) implies that local price indices are functions of the set of local produc-
tivities, of the trade cost matrix and of the other endogenous variables. Hence, city-specific
shocks to local productivities or to the trade cost matrix induce shocks on local price indices.
Wages, populations and emissions are also functions of these shocks. As a result, a standard
OLS estimation strategy would produces biased estimates. Indeed, any positive shock to
local amenities in a given city positively affects local population and emissions. Therefore,
the OLS identification assumption is unlikely to hold. To overcome this identification issue,
I build shift-share instrumental variables for both local labor supply and local emissions.

To build my instruments, I follow the recent literature on shift-share instruments that
has extended the Bartik (1991) approach (Card, 2001; Autor et al., 2013; Nunn & Qian, 2014;
Bartelme, 2018; Bombardini & Li, 2020; Barrows & Ollivier, 2021). The idea is to approximate
city-specific growth rates in populations and emissions using national growth rates of theses
variables in disaggregated industries and interact them with city-specific shares in an initial
period. Thus, I build two instruments as:

L̃it =
∑
s

Lit0s
Lst
Lst0

, with s ∈ ΩL, (29)

and
Z̃it =

∑
s

Zit0s
Zst
Zst0

, with s ∈ ΩZ . (30)

Variables L̃it and Z̃it are respectively the instruments for Lit and Zit in equation (28).
These instruments are independent of city-year specific unobservable shocks to local ameni-
ties, productivity or trade costs. They are only functions of year-specific national shocks
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and city-specific initial sector shares in employment and emissions. National shocks are
common to all cities and do not threaten identification when year fixed effects are included.
Initial sector shares remain constant across time and do not threaten identification when
city fixed effects are included. As thoroughly detailed in Goldsmith-Pinkham et al. (2020),
a recent extensive analysis of shift-share instruments, in order for these two instruments
to be exogenous and the identification assumption to be respected, my strategy implicitly
assumes that unobserved shocks on productivity, amenities or trade costs are uncorrelated
with initial industry shares.21

My estimation strategy builds on annual data on industrial emissions aggregated at
the commuting zone level, on firm and plant-level data on wages, employment and activity
codes also aggregated at the commuting zone level. Each firm is identified by a unique 9
digits identification code (SIREN) and each plant is identified by a 15 digits identification
code (SIRET) with the 9 first digits corresponding to the SIREN of the firm to which the
plant belongs. Based on these two codes I merge the firm and plant level panels. Thus,
for each plant I have a value of the mean wage paid at the firm level. Based on plant-level
zip codes, I compute average wages across local plants at the commuting zone level. This
results in a panel of local wages across commuting zones from 2000 to 2015. The plant-level
panel also includes the number of workers employed on average over the year as well as an
activity code (in the French Activity Nomenclature). I sum across local plants for each sec-
tor to build a panel of total sectoral employment at the commuting zone level from 2000 to
2015. The right hand side of the estimating equation only depends on the total local employ-
ment across sectors, but the instrument defined in equation (29) builds on the sector local
and national disaggregation across sectors. The French Activity Nomenclature distinguishes
between hundreds of very precisely defined industries. I aggregate codes at a larger level
which I call industries and end up with 16 different categories so that ΩL is composed of
agriculture, extraction activities, manufacturing activities, the energy sector, waste manage-
ment, construction, trade, transport, hotels and restauration, telecommunications, finance,
real-estate, public administrations, teaching sector, health, arts and other activities.

I build a commuting zone panel of pollutants emissions from 2000 to 2015 disaggre-
gated across polluting sectors using the geographic emissions dataset from EDGAR. Data
is available as annual 0.1 times 0.1 degree grid sets for each sectors. Each data point corre-
sponds to the quantity of pollutant emitted within the grid cell annually per unit of area.
Based on geographic coordinates I attribute each cell from the EDGAR grid to French com-
muting zones (based on publicly available geographic information on municipalities and
compositions of commuting zones). When a cell overlays several commuting zones, I at-
tribute emissions based on the surface share of the grid overlaying each commuting zone.
Finally I sum emissions over all grid cells within each commuting zone so as to obtain a

21An alternative identification assumption is that the common shocks are exogenous (Adão et al., 2019;
Borusyak et al., 2021).
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panel of sectoral emissions across years and commuting zones. I build such panel for partic-
ulate matters PM10 and PM2.5, nitrous gases NOx and ozone precursors CO and COVNM.
Emissions are disaggregated across 16 polluting sectors: power industry, oil refineries and
transformation industry, combustion for manufacturing, energy for buildings, fuel exploita-
tion, non-metallic minerals production, chemical processes, iron and steel production, non-
ferrous metals production, non energy use of fuels, solvents and products use, food and
paper, manure management, agriculture (3 distinct activities), waste management and dis-
posal (3 distinct activities) and fossil fuel fires. These are polluting activities defined by the
Selected Nomenclature for Air Pollution recommended in the emission register guidebooks
implemented by the IPCC. I exclude some polluting activities that my framework does not
include (aviation, road transportation and shipping).

Table (1) reports the first stage results. Table (2) displays the outcome of δ and γ es-
timations. I observe that the OLS coefficients, without and with city and year fixed-effects,
underestimate the values of elasticities δ and γ. Results from the preferred strategy, re-
ported in columns (3) to (7) of Figure (2) are all positive and statistically significant (except
for the elasticity of environmental damages from emissions of NMVOC, that stands for Non
Methanic Volatile Organic Components). Estimated values of δ have the same interpretation
in columns (3) to (7), and corresponds to the strength of congestion effects. Estimated val-
ues of γ correspond to the elasticity of environmental damage from alternative atmospheric
pollutants. The effects of PM2.5 and PM10 on welfare are the stronger compared to other
pollutants, and very close to each other. This is in line with evidence on the negative effect
of particulate matter on human health. NOx, nitrogen dioxide, has also been found to have
a negative effect on health. However, this pollutant is not primarily emitted by industrial
activities (rather by the transport sector). This explains the lower value of γ in column (5).
Finally, the main health effect from NMVOC and CO is due to their chemical transformation
in ozone. The fact that NMVOC and CO do not directly affect health may explain the lower
values obtained for γ in columns (6) and (7). To conduct my quantitative exercise, I focus on
PM2.5 as the representative pollutant and use coefficients from column (3) in my numerical
analysis.

(1) (2) (3) (4) (5) (6)
Labor PM2.5 PM10 NOx NMV OC CO

Instrument 0.181∗∗∗ 0.889∗∗∗ 0.868∗∗∗ 1.211∗∗∗ 0.960∗∗∗ 1.126∗∗∗

(0.015) (0.028) (0.026) (0.023) (0.035) (0.035)

Observations 5136 4864 4864 4864 4864 4864

City & Year FE Y es Y es Y es Y es Y es Y es

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 1: First stage results for IV estimation of δ and γ
Note: Column (1) reports the first-stage regression coefficient for local levels of employment (number of workers). Columns (2) to (6)
report first-stage regression coefficients for local emissions of a set of pollutants.
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(1) (2) (3) (4) (5) (6) (7)

δ −0.01 0.09 0.91∗∗ 0.89∗∗ 1.00∗∗∗ 0.88∗∗ 0.89∗∗

(0.02) (0.05) (0.35) (0.35) (0.38) (0.34) (0.35)

γ 0.05∗∗ −0.06 0.49∗∗∗ 0.49∗∗∗ 0.08∗ 0.08 0.31∗

(0.02) (0.06) (0.17) (0.17) (0.05) (0.24) (0.16)

Observations 4864 4864 4864 4864 4864 4864 4864

City & Year FE No Y es Y es Y es Y es Y es Y es

IV No No Y es Y es Y es Y es Y es

Pollutant PM2.5 PM2.5 PM2.5 PM10 NOx NMVOC CO

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 2: Estimation of δ and γ
Note: This table presents estimated coefficients δ and γ from equation (28). Columns (1) reports coefficients estimated through a standard
OLS approach, using emissions of PM2.5. Column (2) reports coefficients estimated using city and year fixed-effects, using emissions of
PM2.5. Column (3) reports coefficients estimated using city and year fixed-effects and instrumenting local labor and emissions of PM2.5.
Columns (4) to (7) report coefficients using emissions of other pollutants instead of PM2.5.

4.3 Estimation of Sector-Specific Parameters

To calibrate parameters {βs, σs, θs}s∈S , I closely follows the approach of Shapiro & Walker
(2018). First, I compute Cobb-Douglas parameters {βs}s∈S using the model’s prediction that
these parameters are the national shares of revenues of each sectors. I sum firm-level rev-
enues and compute these parameters. Then, elasticities of substitution are recovered using
the prediction that, for each sector, the ratio of total payment to labor on value-added is
equal to (1 − αs)

σs−1
σs

. Finally, to estimate the Pareto shape parameters, I use the predic-
tion that the distribution of firm-level sales is Pareto with shape parameter θs/(σs − 1) and I
estimate the following equation:

logPr(x > Xis) = γ0s + γ1s log(Xis) + εis (31)

where Xics represents sales made by firm i from sector s in city c and γ1s = − θs
σs−1

. Because
Pareto distribution better fits the right part of the productivity distribution, I restrict the
sample to the upper decile of the firms sample.22

I estimate sector-specific emission elasticities {αs}s∈S at the plant level. Assuming
that for a plant i, installed in city c, and producing goods from sector s, with a productivity
φics, production follows qics = zαsicsl

1−αs
ics φ1−αs

ics and that demand is qics = kcsp
−σs
ics , where pics is

the price charged, the relationship between plant-level employment and emissions follows:

lics = k̃csz
αs(σs−1)

1+αs(σs−1)

ics φ
(1−αs)(σs−1)

1+αs(σs)

ics , (32)

where k̃cs =
([

(1− αs)σs−1
σs

]
w−σsc kcs

) 1
1+αs(σs−1)

, which, in log, allows us to recover emission

22This is an approach developed in Hsieh & Ossa (2016) and Antràs et al. (2017).

21



elasticities using the following empirical specification:

log licst = β0s + β1s log(zicst) + εicst. (33)

Appendix (A.5.2) provides the algebra corresponding to the above equation. Using a stan-
dard OLS strategy to estimate equation (33) would yield biased estimates. Indeed, unob-
served plant specific productivity shocks are correlated with the levels of employment and
emissions. This is the “transmission bias” identified in the literature on production functions
estimations. To circumvent this problem, I instrument plant-level emissions zics with exoge-
nous fuel-specific energy price variation. Building on Sato et al. (2019), I use a fixed-weight
energy price index that measures the plant-specific exposure to variation in fuel prices based
on each plant energy consumption across fuel types in the first period when it is observed.
I define this instrument as:

FEPIist =
∑

f∈Ωfuels

ωf,ist0pf,st, (34)

where FEPIist is the plant-specific energy price index built from plant i share of energy
expenditures in fuels f ∈ Ωfuels (coal, natural gas, electricity, etc.) in period t0 and pf,st

the specific fuel price common to all plants in sector s in period t. An advantage of this
emission elasticity estimation strategy is that it only requires to observe plant-level inputs.
Conveniently, the EACEI surveys combine plant-level labor and energy consumption across
fuels. Note that both the endogenous variable and the instrument are constructed from the
EACEI surveys but are not aggregated across fuels using the same weights: the instrument
is the sum of consumption weighted by fuel prices and the emissions are the sum of con-
sumption weighted by emission factors that are also fuel specific. I estimate equation (33)
for each sector using PM2.5 emissions. Table (4) displays all sector-specific coefficients that
I use in my numerical analysis.

To my knowledge, the only other paper that has estimated these parameters is Shapiro
& Walker (2018). However, they pool observations from different sectors and only estimate
on coefficient. To allow the comparison with their results, Table (3) reports the results that I
obtain for different pollutants when industrial sectors are pooled. The first-stage using the
fixed-weight energy price index yields significant estimates that are intuitive: on average in-
creasing polluting fuels prices by one percent causes a one percent decrease in atmospheric
pollutant emissions. Across pollutants, the second stage yields similar estimates for the
pooled sectors emissions intensity, approximately 5%. To my knowledge the only other re-
cent estimates of industrial emission intensities are computed by Shapiro & Walker (2018).
They use plant level emission data combined with information on emissions abatement costs
from PACE surveys in the United States. Their pooled estimates are lower than mine (1.1%
for PM2.5, 1.1% for PM10, .1% for NOx, .08% for CO and .8% for COVNM). The fact that
their sample includes a wider range of economic activities that are less pollution intensive
may explain this difference.
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(1) (2) (3) (4) (5)
log (emiPM25) log (PM10) log (NOx) log (CO) log (COVNM)

First Stage:
logFEPI −1.00∗∗∗ −1.00∗∗∗ −0.98∗∗∗ −1.07∗∗∗ −1.06∗∗∗

(0.012) (0.012) (0.010) (0.009) (0.009)

Second Stage:
α(σ−1)

1+α(σ−1)
0.049∗∗∗ 0.049∗∗∗ 0.051∗∗∗ 0.046∗∗∗ 0.046∗∗∗

(0.004) (0.004) (0.004 (0.003) (0.003)

Observations 223, 401 223, 401 223, 402 223, 406 223, 406

Year, Region & Industry FE Y es Y es Y es Y es Y es

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3: Two-stages calibration of emission elasticities α (with pooled industrial sectors)

Finally, I estimate sector-specific elasticities of agglomeration economies {νs}s∈S us-
ing a regression of city-specific mean firm productivity against city size. To estimate produc-
tivity, I regress firm-level log value added on city times sector specific fixed-effects. From
equations (12) and (18), the residual from such regression corresponds to firm specific TFP
(up to a proportionality factor (1−αs)(σs−1)). Finally, I compute the average of this residual
within each city and regress it on the logarithm of local population to obtain ν.

Elasticity Pareto Elasticity
Sales of shape of Agglo. Pollution
share substitution parameter Economies elasticity

(β) (σ) (θ) (ν) (α)
Sectors (1) (2) (3) (4) (5)

Automobile & transport .02 2.27 1.85 (.19) .05 (.006) .036 (.001)
Chemicals .05 3.48 1.33 (.13) .02 (.005) .080 (.012)
Communications & Electronics .01 3.45 2.85 (.16) .00 (.004) .025 (.010)
Electrical Equipment .01 3.91 3.59 (.31) .00 (.004) .079 (.010)
Extraction .01 2.22 1.58 (.08) .02 (.006) .126 (.015)
Food, beverages & Tobacco .05 3.82 2.89 (.02) -.01 (.001) .030 (.003)
Machinery & Equipment .01 3.10 3.88 (.08) .01 (.002) .015 (.005)
Metal .02 3.06 2.29 (.02) .00 (.002) .084 (.006)
Rubber & Plastic .02 2.92 2.66 (.15) .00 (.002) .120 (.011)
Textile & Apparel .01 2.99 2.21 (.04) .02 (.002) .089 (.006)
Wood & Paper .01 2.90 2.42 (.03) .01 (.002) .035 (.005)
Other Manufacturing .02 2.47 1.49 (.01) .00 (.002) .035 (.008)
Non manufacturing .75 2.69 1.48 (.00) .00 (.000) .021 (.016)

Pooled (except NM) .01 (.001)

Table 4: Estimated parameters
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4.4 Trade Costs Matrix

Because I do not observe bilateral trade flows between cities, I cannot estimate a gravity
equations to recover bilateral friction terms. Therefore, I follow Yamada (2020) and rely
on the methodology used in Baum-Snow et al. (2020) that assumes the following concave
relationship between iceberg bilateral trade costs and bilateral travel times:

τij = 1 + ρ× (hours of travel timeij)ξ. (35)

I compute travel time using the Open Source Routing Machine (OSRM) API Python client
osrm-py. The OSRM is a C++ routing engine for shortest paths in road networks building in
the road network data of the project OpenStreetMap. Figure (2) displays the average travel
time by road across all commuting zone. As expected, central areas are better connected to
the rest of the country.

6

8

10

12

14

16

Figure 2: Average travel time across all commuting zone
Note: On this map I plot the average travel time from each commuting zone toward all the other commuting zones. Travel time is in
hours. Travel times were computed using the Open Source Routing Machine (OSRM) API Python client osrm-py

4.5 Recovering Local Characteristics

Once all parameters are estimated, I numerically solve the non-linear system of equilibrium
conditions defined in section 3 by equations (22), (25), and (26). To do so, I use data on
the distribution of workers, wages, and industrial PM2.5 emissions across cities in 2012 (see
subsection 4.1 for a description of the data). This procedure allows me to retrieve the set
of idiosyncratic characteristics – amenities and productivities – as well as the set of emis-
sion taxes across cities. Without loss of generality, I set the mean emission tax, productivity
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and the sum of amenities across cities to be equal to one. In practice, I invert the equi-
librium conditions using the Levenberg–Marquardt algorithm as implemented in the scipy
library in Python 3. This algorithm is an interpolation between the standard Gauss–Newton
algorithm and the method of gradient descent that is more robust to the choice of initial
values. Results from this step are described in the next section. Appendix A.6.1 provides
further details on the sources of data for observed equilibrium distributions of wages, popu-
lations and emissions across French cities. Appendix A.6.2 provides descriptive statistics on
wages, populations and emissions across French cities. Finally, appendix (A.6.3) provides
descriptive statistics on the computed exogenous distributions of amenities, productivities
and emission taxes across French cities.

5 Spatially Heterogeneous Emission Regulations

5.1 Evidence of Spatially Heterogeneous Emission Regulations

In Figure (3), I plot the city-level emission taxes obtained through the numerical solution
of equilibrium conditions described in subsection 4.5. More precisely, panel (a) plots local
emission taxes as a function of population in 2012, panel (b) plots local emission taxes as a
function of amenities, and panel (c) plots local emission taxes as a function of productivities.
Throughout this section, I plot the logarithm of all variables. This is done for visual clarity,
as most distributions are very skewed. I emphasize that these local emission taxes are not
actual policy instruments implemented in France. As in Shapiro & Walker (2018), a way to
see these values is as follows: if all French emission regulations were to be replaced by local
emission taxes, Figure (3) would be the set of taxes that leads to the distribution of PM2.5
emissions that we observe across French cities. Equivalently, these local emission taxes can
be seen as measures of how stringent are emission regulations in each city relative the others.

Figure 3 uncovers a large heterogeneity of emission regulations across cities. The pos-
itive correlation between local taxes and populations also reveals that existing regulations
impose more stringent emissions regulations in larger cities. This observation is supported
by anecdotal evidence presented in Appendix A.2. Indeed, several French regulations, that
seek to enhance local air quality, impose higher emission standard in larger cities. Is this set
of regulations optimally distributed across cities? In 2, the simple model predicted that an
optimal set of emission taxes was positively correlated with both amenities and productiv-
ities.23 Panel (c) from Figure (3) displays a strong positive correlation between local levels
of productivities and emission taxes that must not be too far from the optimum. However,
panel (b) from Figure (3) shows that the current distribution of emission taxes does not dis-

23In section 2, the optimal set of emission taxes is positively correlated with both amenities and productivi-
ties when θ > 0, which is the case given values computed in section 4.
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Figure 3: Log-linear relationship between local relative emission taxe and local relative population,
productivity and amenity
Note: On this figure I plot the current distribution of emission taxes as a function of current populations on panel (a), of local amenities on
panel (b), and of local productivity on panel (c). The distributions of local relative emission taxes, productivities and amenities are
estimated by inverting the observed equilibrium using one tradable sector and data for 2012.

play such positive correlation between emission taxes and local amenities. Therefore, the
current set of emission taxes across French cities seems to potentially be off from what the
model indicates to be the optimal distribution.

Figure (3) also highlights in blue the top ten cities where emission regulations are the
most stringent and in red the bottom ten cities where they are the less stringent. As expected,
cities with the highest levels of emission taxes are also the most productive and that cities
with the lowest levels of emissions costs are the less productive. Yet, among cities with the
highest levels of emission taxes, some have very high levels of amenities, whereas others
have very low levels of amenities.
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5.2 Welfare Impacts of Spatially Heterogeneous Emission Regulations

Results from the previous subsection highlight the spatial heterogeneity of local emission
taxes across French cities. In this subsection, I analyze how this heterogeneity affects the
distribution of emissions, population and wages. To that end, I compare the observed equi-
librium with a counterfactual equilibrium where the level of emission taxes is uniform across
all cities. The differences between the two equilibrium can help understanding the conse-
quences of the spatial heterogeneity of emission taxes. Using the values of idiosyncratic
amenities and productivities obtained previously, I compute a new equilibrium by solving
equilibrium conditions (22), (25) using a uniform emission tax across cities. This uniform
emission tax value is the mean of all emission taxes obtained in the previous computa-
tion, which has been normalized to one without loss of generality throughout the analysis.
The counterfactual equilibrium is solved numerically using the Levenberg–Marquardt algo-
rithm. Figure (4) displays the results from this exercise. For each endogenous variable of
interest in the model, I plot a map showing the variation in level of moving from a uniform
emission cost to the current distribution of emission taxes that is heterogeneous across cities.
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Figure 4: Spatial reallocations and welfare effect of imposing spatially heterogeneous emission
taxes
Note: On this figure I map the changes in emission taxes, wages, industrial workers’ populations, emissions, real wages, and welfare du
to a move from a spatially uniform emission tax to the current set of emission tax.

Because emission taxes are actually higher in larger cities, such as Paris, Lyon, Bor-
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deaux, Toulouse, the map of changes in t reveals an increase in these cities, and a decrease in
less populated cities. In turn, the map of ∆Z reveals a decrease in the largest cities, and an
increase in the smallest cities. Hence, when the central planner implements more stringent
air quality policies in largest cities relative to smaller cities, emissions are relocated from
the most populated areas to the least populated areas. Figure (4) also plots the changes in
the level of population (∆L) to illustrate the reallocation of population across cities due to
the move from uniform to heterogeneous stringency. Given the free migration assumption,
workers react to changes in local air quality (and prices which are affected by the change
in local emission taxes) and move away from more polluted areas. The panel on ∆L show
that there is a reallocation of workers from small cities (where emissions have increased) to
larger cities where emissions have decreased. As larger cities become cleaner, more people
have an incentive to live there.

Figure (5) plots the log-difference in local populations between the current equilib-
rium and the counterfactual one with uniform emission taxes, as a function of initial pop-
ulation (in panel (a)), of amenities (in panel (b)), and of productivities (in panel (c)). For
a given city, a positive number indicates that the local population is higher under the cur-
rent distribution of emission taxes compared to the counterfactual. Panel (a) reveals that the
largest cities have a larger population because of the spatial heterogeneity in regulations.
Panels (b) and (c) show that the top ten cities for which population increases the most are
also highly productive cities but not cities with particularly high amenities. Figure (6) is sim-
ilar to Figure (5), except that it shows changed in emissions instead of populations. Panel
(a) shows that the largest cities emit less pollution because of the spatial heterogeneity in
regulations. Panels (b) and (c) illustrate the fact that more stringent regulations in more pro-
ductive cities leads to lower levels of emissions there, compared to the counterfactual. There
are no clear correlation with the distribution of local amenities. Panels (a) from Figures (5)
and (6) suggest that more stringent regulations in larger cities allowing them to be cleaner
(less emissions) and in turn larger (higher population) than what they would be under a
uniform regulation.

5.3 Optimal Mean-Preserving Set of Heterogeneous Regulations

The model can be used to assess which set of emission taxes across cities maximizes wel-
fare. To do so, I numerically solve the ū maximization problem under the constraint that
the mean emission tax across cities remains equal to one. This optimization exercise yields
a new spatial equilibrium that can be compared to the current equilibrium. With this nu-
merical solution, I present normative and empirical results on the gap between the current
distribution of relative stringencies across French cities and the distribution that would max-
imize workers’ welfare. In practice, I identify for each city an optimal level of regulation that
I compare to the current level of regulation.
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Figure 5: Effects of spatial heterogeneity emission stringency on local populations: under the
current policy, large cities are larger than what they would be if they faced a uniform emission tax
Note: On this figure I plot the relative change in industrial workers’ population at the commuting zone level as a result of a move from a
uniform to the current distribution of emission taxes. This change is plotted as a function of current populations on panel (a), of local
amenities on panel (b), and of local productivity on panel (c).

Figure (7) displays the results from the maximization exercise. It plots the optimal
distribution of the logarithm of emission taxes as a function of the log of: current city pop-
ulation (panel (a)), amenities (panel (b)), and productivities (panel (c)). The current distri-
butions from Figure (3) are depicted in black and the optimal distributions are depicted in
red. Figure (7) reveals that increasing the relative emission regulations in larger cities would
achieve welfare gains. Figure (7) shows that the distributions in red display less variation
on the left part than on the right part. This is because set of emission taxes results from a
constrained numerical optimization algorithm: small cities are so much smaller than large
cities, the constraint to keep the mean emission tax fixed implies that optimal emission taxes
are put to the minimum level possible in small cities. These points are corner solutions.
However, because distributions of cities’ characteristics (amenities and productivities) are
so skewed, only the largest cities matter for aggregate welfare.

As discussed in section 2 and illustrated in panel (b) from Figure (7), increasing the
relative stringency of regulations in cities with higher amenities would welfare-improving.
This is because, currently, cities with higher amenities are generally too small because work-
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CréteilCergy LillePoissy LyonCannes - Antibes

(a)

Top 10 Increased Emissions

Bottom 10 Decreased Emissions

−16 −14 −12 −10 −8 −6 −4 −2

log a

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

∆ logZ

(b)

−0.4 −0.2 0.0 0.2 0.4 0.6

log b

(c)

Figure 6: Effects of spatial heterogeneity emission stringency on local emissions: under the current
policy, large cities emit less pollution than what they would if they faced a uniform emission tax
Note: On this figure I plot the relative change in industrial emissions at the commuting zone level as a result of a move from a uniform to
the current distribution of emission taxes. This change is plotted as a function of current emissions on panel (a), of local amenities on
panel (b), and of local productivity on panel (c).

ers and firms do not internalize the impact of their location choices on local air quality. Panel
(a) shows the reallocation necessary to move from the current distribution of relative emis-
sion taxes to the optimal one. These taxes need to be raised in the currently largest cities,
and decreased in the smallest cities. Panel (c) from Figure (7) indicates that there is already a
strong positive correlation between the spatial distribution of emission taxes and the distri-
bution of idiosyncratic productivities. Solving the optimization problem confirms that such
correlation is optimal. Indeed, panel (c) shows that the coefficient of the log-linear relation-
ship between the local idiosyncratic levels of productivities and the relative emission taxes
is currently not too far from the optimal one.

5.3.1 Reallocating Population Across Space

Figure (8) displays the population reallocation effect that would follow from the adoption
of the optimal distribution of relative emission taxes. In particular, it highlights in blue the
cities that would see their local population increase. Only a small subset of cities (around
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Figure 7: Comparison between current distribution of relative emission taxes (black) and the
mean-preserving optimal distribution (red): emission taxes are lower in smaller cities and increased
in larger cities
Note: On this figure I plot the current distribution of emission taxes in black and the optimal distribution of emission taxes as functions of
current populations on panel (a), of local amenities on panel (b), and of local productivity on panel (c). The current distribution is
depicted in black and the optimal distribution is depicted in red.

15 of them, out of 300 cities) would grow larger and the other cities would become smaller.
Specifically, panel (a) shows that population concentration is reinforced: the largest cities
grow even larger. Panel (b) indicates that this reallocation mainly comes from a reallocation
of workers toward cities with higher amenities.

Figure (9) reveals the concentration effect of adopting the optimal set of emission
taxes. Ranking cities according to their current populations, the cumulative population
starting from the smallest city is depicted by the black line. The red line depicts the same
cumulative sum using what local populations would be under the optimal set of emission
taxes. Since the red line would be more skewed to the right than the black line, workers
become more concentrated in the largest cities under the optimal distribution of emissions
costs than under the current set of policies.
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Figure 8: Population reallocation when moving from the current to the optimal distribution of
relative emission taxes
Note: On this figure I plot the relative change in industrial workers’ population at the commuting zone level as a result of a move from
the current to the optimal distribution of emission taxes. This change is plotted as a function of current populations on panel (a), of local
amenities on panel (b), and of local productivity on panel (c). In blue are the cities that would see their population increase as a result of
this emission taxes distribution shift.

5.3.2 Reallocating Emissions Across Space

Figure 10 displays the pollution reallocation effect of moving to the optimal set of emission
taxes. In particular, it highlights in green the cities that would see their local emissions
decrease. In blue are the cities for which emission would decrease and population would
decrease. As expected, it is optimal to decrease emissions in the currently more polluted
cities (panel (a)), corresponding to a reallocation of emissions from cities with high amenities
to cities with low amenities (panel (b)).

Figure (11) compares the cumulative distributions of emissions under the current
(black line) and the optimal (red line) distributions of emission taxes across cities. Since the
red line is less skewed to the right than the black line, the optimal reallocation of emissions
across cities reduces spatial concentration of emissions.
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Figure 9: Cumulative distributions of population under the current and the optimal distributions
of emission taxes
Note: On this graph, I plot the cumulative sum of industrial workers’ population across French commuting zones as a function of their
respective ranks by industrial workers’ population. I depicted this distribution in black for the current distribution and in red for the
optimal distribution. A 45 degree line who mean that emissions are evenly spread across cities. A curve skewed to the right indicates
spatial concentration of workers in a few places.
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Figure 10: Emissions reallocation when moving from the current to the optimal distribution of
relative emission taxes
Note: On this figure I plot the relative change in emissions at the commuting zone level as a result of a move from the current to the
optimal distribution of emission taxes. This change is plotted as a function of current emissions on panel (a), of local amenities on panel
(b), and of local productivity on panel (c). In blue are the cities that would see their population increase as a result of this emission taxes
distribution shift. In green are the cities that would see their emissions decrease.
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Figure 11: Cumulative distributions of pollution emissions under the current and the optimal
distributions of emission taxes
Note: On this graph, I plot the cumulative sum of industrial emissions across French commuting zones as a function of their respective
ranks by quantity of emission. I depicted this distribution in black for the current distribution and in red for the optimal distribution. A
45 degree line who mean that emissions are evenly spread across cities. A curve skewed to the right indicates spatial concentration of
emissions in a few places.
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6 Conclusion

In this paper, I analyze how the spatial distribution of local air quality policies can improve
welfare. I incorporate in a simple spatial model endogenous industrial emissions of atmo-
spheric pollutants. As pollution has a negative effect on welfare and workers move away
from polluted areas, I show that the central planner should adopt higher emission taxes in
cities that have higher levels of amenities and productivity. I build a general version of the
model that includes heterogeneous industrial sectors and I estimate the model’s parameters
using an extensive set of data on French firms and cities. Then, I retrieve the model’s primi-
tives – local amenities, productivities, and emission taxes – from data on the distribution of
workers, wages, and industrial PM2.5 emissions across cities. In the French context, I show
that current regulations correspond to a set of emission taxes that are higher in the largest
cities. Finally, I numerically solve the central planner’s welfare maximization problem. I
find that further increasing emission taxes in the largest French cities could achieve welfare
gains.

This paper sheds light on a spatial tradeoff between clean air and productivity. My
results indicate that policy makers should not implement environmental policies uniformly
across locations. Rather, they should be more stringent in large cities. This has important
implications in terms of environmental regulations design. The optimal set of relative emis-
sion taxes that I identify in this paper is independent of the average level of the tax. This
means that it is applicable to any new air quality regulation: for any given objective of pol-
lution reduction, local regulatory burdens should follow the distribution described in this
paper. Future work should incorporate additional factors such as inequalities in exposure
to atmospheric pollution (Agyeman et al., 2016; Banzhaf et al., 2019; Colmer et al., 2020).
Extending this work to include distributional effects of air quality regulations and their im-
pacts on inequalities in exposure to pollution (Currie et al., 2020; Shapiro & Walker, 2021)
could further help investigate optimal place-based environmental policies.
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A Appendices

A.1 Descriptive Statistics on Pollution from the Industry

Over the last decades, several regulations have been implemented in France to reduce at-
mospheric pollution. As a result, national levels of emissions have decreased in the past.
Figure (12), constructed from the European Emissions Database for Global Atmospheric Re-
search (EDGAR), shows this decrease for particulate matters 10 and 2.5 as well as for sulfur
dioxide. However, observed levels of pollution in France are still well above World Health
Organization (WHO) guidelines in several areas over the country. Using data on air con-
centration in PM10, PM2.5 and SO2 from ground monitors installed in diverse locations, I
illustrate this situation on Figure (13) and show that a substantial fraction of monitors mea-
sures concentrations above the 24-hour and annual guidelines from the WHO guidelines.
There are many sources for this pollution. Figure (12) also illustrates the distribution of the
pollution sources. One can observe that for the three pollutants highlighted, PM10, PM2.5
and SO2, industrial activities represent a large fraction of the emissions. Tables (5), (6) and
(7) present the respective contributions of the main polluting activities: in 2012, industrial
activities contributed to respectively 23%, 40% and 42% of PM10, PM2.5 and SO2 national
emissions.

% Share from: 1990 2000 2012

Industry 19.4 21.4 23.0
Energy 6.7 4.8 3.8

Transport 12.2 15.4 9.4
Residential 40.1 34.6 39.1
Agriculture 17.2 22.5 24.6

Waste 4.4 1.3 0.1

Table 5: Distribution of PM10 Emissions Across Activities (data from EDGAR timeseries):
in 2012, 23% of PM10 emissions result from industrial activities.
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% Share from: 1990 2000 2012

Industry 30.5 28.0 39.6
Energy 10.8 7.5 5.7

Transport 37.6 46.3 33.2
Residential 12.0 8.3 10.6
Agriculture 5.5 9.0 10.8

Waste 3.6 1.0 0.1

Table 6: Distribution of PM2.5 Emissions Across Activities (data from EDGAR timeseries):
in 2012, almost 40% of PM2.5 emissions result from industrial activities.

% Share from: 1990 2000 2012

Industry 32.3 28.8 41.7
Energy 43.0 47.2 31.9

Transport 2.7 3.9 5.5
Residential 21.3 19.6 20.3
Agriculture 0.2 0.2 0.5

Waste 0.5 0.4 0.2

Table 7: Distribution of SO2 Emissions Across Activities (data from EDGAR timeseries): in
2012, almost 42% of SO2 emissions result from industrial activities.
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Figure 12: 1990-2012 Evolution of PM10, PM2.5 and SO2 emissions by Activities (data from
EDGAR timeseries): for these pollutants, a substantial fraction of national emissions still
result from industrial activities.
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Figure 13: Annual and 24-hour Mean Concentration Measurement from French Ground
Monitors in 2012 (data from the EEA AirBase V8): for PM10, PM2.5 and SO2, a substantial
fraction of ground monitors measures concentrations above WHO guidelines.
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A.2 Air Quality Regulations in France

Air pollution regulation in France is based on European standards. Limits for maximum
air concentration of various pollutants and reduction objectives are set at the EU level (di-
rectives 2004/107 and 2008/50/CE) to be enforced in each Member States. In turn, they
must implement specific action plans to remain within these limits and reach the air quality
objectives. In the case of France, these actions are taken both by central and local authorities.

The French government regulates pollutant emissions through tax instruments and
regulatory standards (Hauvuy & Riedinger, 2005; Bougon & Lavergne, 2019). The main
tax instrument is the General Tax on Polluting Activities (TGAP), which is a national tax
on the quantity of pollutant emitted per year. In 2016, more than a thousand installations
were subjects to this tax (IGF, 2018). However, the air pollution component of the TGAP is
limited,24 and does not constitute the most efficient instrument enforced to limit air pollu-
tion (Millock & Nauges, 2006; IGF, 2018). Frameworks regulating industrial emissions are
mainly set at a national level. However, their implementation is usually enforced by lo-
cal authorities. For instance, the main regulatory framework for polluting activities is the
ICPE regulation, standing for Plants Classified for the Protection of the Environment. The
ICPE is a set of norms governing polluting plants activities in relation with their impact on
the environment. Notably, it requires that an opening permit is delivered by the authority
of the departmental prefects for any polluting plant under the condition of implementing
specific technology standards and after conducting a local survey of the local population.25

Moreover, some of these classified plants may fall under the EU Directive on Industrial
Emissions (IED).26 This is the case if they are running polluting installations with capacities
above thresholds set in the IED. The main obligation enforced under this regulation is the
Best Available Technique (BAT): authorizations for industrial installations are conditional
to the use of the least pollution intensive techniques. In that respect, the current national
regulation focuses mainly on the largest plants, but any smaller polluting plant not covered
by the ICPE regulation is regulated at the municipality level.

Furthermore, since the LAURE law, adopted in 1996, other local authorities can use
specific measures to improve local air quality and reach air quality national targets. For in-
stance, starting in the early 2000’s, several “Atmospheric Protection Plans” (PPA) have been
implemented in different areas. Within their respective application zone, many of these
plans adopted differentiated measures for more versus less densely populated areas. Some
of these plans introduced more stringent environmental standards for the manufacturing

24In 2016, e50 millions were collected compared to the e3.8 billions collected for the carbon component of
the energy consumption tax in 2016 (DGEC, 2016)

25These prefects are the regional authorities for the “départements” which are NUTS 3 geographic units
(larger than commuting zones).

26Since 2010, the Industrial Emissions Directive has replaced the Integrated Pollution Prevention and Con-
trol Directive. The guidelines are similar and aim at preventing air, water, and soil pollution.
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industries, especially in agglomerations above a certain threshold of inhabitants. For in-
stance, the three consecutive PPAs for the Paris region mandated lower industrial NOx and
PM emission caps relative to the national caps. These plans also implement emergency
responses when air concentration of certain pollutant exceed national and European stan-
dards. Figure (14) shows the distribution of existent PPA across commuting zones27 and
highlights the positive relationship between the size of commuting zones and their proba-
bility to lie in the perimeter of an PPA.

Finally, both national and local regulations mandate that when air quality reaches
regulatory thresholds, emergency actions must be launched by the departmental prefect.
Figure (15) illustrates the positive relationship between the size of these areas and the num-
ber of emergency actions cases accounted for since 2017.

27PPA are adopted at a geographic level potentially lower than the commuting zone, which is a statistical
construction. The map in Figure (14) displays commuting zone where at least one PPA is implemented in its
sub-areas.
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Figure 14: Distribution of Atmospheric Protection Plans across commuting zones
Note: The upper map shows the set of commuting zones that contains municipalities that adopted PPAs since the LAURE law. The lower
panel plots the probability that a commuting zone contains municipalities that adopted a PPA as a function of its population. The black
line is the result of a logit function fitted on the data on PPA adoption across French commuting zones.
Data on PPAs is from the French Ministry to the Ecological Transition
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A.3 Illustrative Framework Appendix

In each city j, the quantity of the tradable good produced is:

Qj = Zα
j (φLj L

prod
j )1−α, (36)

with Lprodj the local population employed for production, φLj the local labor productivity
and Zj the local quantity of emissions. Each input has the respective unit price wj and tj .
Moreover, remember that due to the assumption of agglomeration economies local labor
productivity φLj is equal to bjLνj . Local firms solve the cost minimization program:

min
Zj ,Lj

Lprodj wj + Zjtj s.t. Qj = Zα
j (φLj L

prod
j )1−α. (37)

FOCs with respect to labor and emissions yield the relative labor to emissions inten-
sity, which is city specific and depends on the local ratio of input prices:

Zj

Lprodj

=
α

1− α
wj
tj
. (38)

Agglomeration economies are an externality and are not taken into account by firms in their
cost minimization problem. That is to say that each firm is atomistic and does not consider
that fact that the higher is local employment the larger labor productivity will be. From this
proportion of each input in production, one can compute the marginal production price cj :

cj = κ(α)tαj

(
wj
φLj

)1−α

, (39)

with κ(α) = (1−α)1−α

αα
which I drop in the following computations for simplicity and with-

out loss of generality (α remains a constant in the equilibrium and the central planner’s
optimization problem).

Given the assumption of perfect competition and not mark-up with a fixed output
price fixed to 1 on foreign markets, we then have in equilibrium that cj = 1 which gives the
expression for equilibrium wages:

wj = bjL
ν
j t
− α

1−α
j . (40)

The total income accounts for payments for production labor and labor employed for abate-
ment (or ). As a result one can write:

wjLj = wjL
prod
j + tjZj, (41)

which yields the formula for local emissions as function of local population, local wages and
local emission cost:

Zj = α
wjLj
tj

. (42)

50



Given that the output price is the same across cities and normalized to 1, each worker’s
budget constraint can be written as:

wj × 1 = 1× cj. (43)

Using equations (40), (42) and (43) to substitute in the representative worker’s utility
function we get:

uj = ajb
1−γ
j L−θj t

γ−α
1−α
j , with θ = δ + γ − ν(1− γ). (44)

Given the assumption of free migration of workers, utility is equalized across cities
and I note its equilibrium level ū. The national population is fixed and normalized to 1, so
that: ∑

j∈C

Lj = 1. (45)

Using the fact that equation (44) can be rewritten as:

Lj =

[
ū−1ajb

1−γ
j t

γ−α
1−α
j

] 1
θ

, (46)

which illustrates that there exist a unique spatial equilibrium if and only if θ 6= 0. This condi-
tion can be expressed as a condition on the elasticity of the pollution externality: γ 6= − δ−ν

1+ν
.

Assuming that pollution is a congestion force (i.e. γ > 0), this condition ensures that the
pollution externality does not exactly offset the combined effect of general congestions ef-
fect and agglomeration economies. When congestion effects strictly outweigh agglomera-
tion economies, this condition always holds. I substitute in equation (45) and extract the
equilibrium welfare:

ū =

[∑
j∈C

a
1
θ
j b

1−γ
θ

j t
1
θ
γ−α
1−α

j

]θ
. (47)

Finally I solve that optimization program:

max
{ti}i∈C

ū(t1, ..., tC) s.t.
∑
j∈C

tj = 1, (48)

by computing the first and second order conditions of the Lagrangian:

L = ū(t1, ..., tC) + λ

(
C −

∑
j∈C

tj

)
, (49)

with λ the Lagrangian multiplier. Computing the derivatives of ū, I find:

tj
ū

∂ū

∂tj
=
γ − α
1− αLj (50)

and
∂2ū

∂t2j
=

1

tj

∂ū

∂tj

[(
γ − α
1− α −

1

θ

γ − α
1− α

)
Lj −

(
1− 1

θ

γ − α
1− α

)]
. (51)
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Then, the first order conditions are:

∀j ∈ C, ū θ−1
θ
γ − α
1− αa

1
θ
j b

1−γ
θ

j t∗j
1
θ
γ−α
1−α−1 = λ, (52)

from which wet get equation (7).

The concavity condition that ensures that the set of emission taxes identified in equa-
tion (7) is unique and corresponds to a maximization of workers’ welfare is:

∀j ∈ C, ∂
2ū

∂t2j
< 0. (53)

which can be expressed as:(
γ − α
1− α

)2(
1− 1

θ

)
Lj −

(
γ − α
1− α

)(
1− 1

θ

γ − α
1− α

)
< 0. (54)

In particular, the left-hand side term of inequation (54) is a linear function of each Lj with
variations that only depend on the sign of θ − 1. We are looking for the set of parameters
for which the welfare function is concave over any set of cities (in particular, the concavity
condition must hold for city sizes infinitely close to 0 or equal to 1, if there is a unique city).
Consequently, if θ > 1, we only need

(
γ−α
1−α

)2 (
1− 1

θ

)
<
(
γ−α
1−α

) (
1− 1

θ
γ−α
1−α

)
. Respectively, if

θ ≤ 1, we only need 0 ≤
(
γ−α
1−α

) (
1− 1

θ
γ−α
1−α

)
.

If θ > 1, the condition holds if and only if 1 > γ > α. If θ ≤ 1, the condition holds if
and only if

θ > 1 means pe is strong θ ≤ 1 means pe is weak
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A.4 Relaxing the Free Migration Assumption

Assume all the hypotheses of the simplified framework. The only difference is that, now,
the distribution of workers across locations is fixed, meaning that for every location j, Lj is
exogenously given. This assumption means that there are not adjustment of populations to
local changes of wage or air quality. This corresponds to a “very” short-term version of the
model where movement frictions are infinitely high.

In this small extension I consider that the central planner still tries to maximize wel-
fare by choosing the distribution of relative emission taxes that maximizes the weighted
average welfare per capita. Indeed, without free migration, welfare is not equalized across
locations anymore. Still, the central planner has to maximize an objective function. Sum-
ming the local welfare levels using local populations as weight corresponds to computing
average welfare per capita. It puts the same weight on each worker welfare. In the equilib-
rium with free migration, it corresponds exactly to the common level of welfare reached in
all locations and ũ = ū.

We note this alternative objective function ũ and define it as:

ũ =
∑
j∈C

Ljuj =
∑
j∈C

LjajL
−δ
j Z−γj cj (55)

This extension constitute the alternative to the free migration model. Both are extreme
and in reality one may find a situation that is between these two cases. Introducing costs of
moving that may allow endogenous distribution of labor across space would require adding
a dynamic side to the model. Such assumption would also call for the companion extension
to heterogenous workers to encompass the empirical fact that workers with higher income
are more likely to adjust to local pollution than low income workers;

Keeping the other assumptions of the simple model, we have:

wj = bjL
ν
j t
− α

1−α
j (56)

Zj = α
wjLj
tj

(57)

Replacing the ũ, I get that the weighted average per capita welfare is (without con-
stant):

ũ =
∑
j∈C

L1−θ
j ajb

1−γ
j t

γ−α
1−α
j (58)
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with θ = γ + δ − ν(1− γ).

Assuming that the central planner solves:

max
{tj}j∈C

ũ s.t.
∑
j∈C

tj = 1 (59)

She finds the following distribution of relative emission taxes:

∀(j, i) ∈ C2,
t∗j
t∗i

=

(
aj
ai

) 1−α
1−γ
(
bj
bi

)1−α(
Lj
Li

) 1−α
1−γ (1−θ)

(60)

Using estimated elasticities this imply that optimal taxes should be higher in larger
cities and cities more productive and with higher amenities which is in line with the result
obtained when free migration is assumed.
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A.5 Estimation Appendix

A.5.1 Building Plant-Level Pollutants Emissions from Energy Surveys

Pollutant PCC Nb. Obs.

SO2 .1929* 1060
PM10 .7758* 45
NOX .8192* 1734
COVNM .2143* 4689
CO .7898* 313

Table 8: Pearson correlation coefficients between actual emissions values from the E-PRTR
and estimated values from the EACEI survey (* indicates significance at the 1% level).

A.5.2 Estimation of the Sector Specific Emission Intensities

Assuming that for a plant i, installed in city c and producing goods from sector s, that has an
intrinsic productivity equal to φics production follows qics = zαsicsl

1−αs
ics φ1−αs

ics and that it faces
demand qics = kcsp

−σs
ics , where pics is the price charged.

As I do not observe the distribution of inputs across destination, I abstract from the
fact the plants may face distinct demand functions in each destination (in the case where
trade between cities is costly). This assumption is mainly due to data constraint but consid-
ering that, in practice, within-country trade costs are low, it is also acceptable. The variable
kcs encompasses both the size of the output market and the level of competition on this
market. What is important is that all plants within the same region face the same kcs.

Writing the expression for plant revenues:

rics = picsqics (61)

= k
1
σs
cs q

σs−1
σs

ics (62)

= k
1
σs
cs

(
zαsicsl

1−αs
ics φ1−αs

ics

)σs−1
σs (63)

Based on the standard results from monopolistic competition with CES demand,
markups are fixed and depend on σs. Based on the standard results of cost minimization
under Cobb-Douglas production functions, plant-level expenditure shares across inputs are
fixed and given by αs. These two results combined allow the following formulation of the
relationship between revenues and employment:
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rics =
σs

σs − 1

1

1− αs
wicslics (64)

with wics the plant-specific unit cost of labor. In the main model of this paper I make
the assumption that this cost is the wage and is the same across sectors and firms within a
city. However, in this appendix on the estimation of emission elasticities, I temporarily relax
this assumption to show that if, in reality, there are plant specific shocks on wages (which is
likely to be the case) it does not threaten my estimation strategy.

Substituting revenues in (61) using (64):

σs
σs − 1

1

1− αs
wicslics = k

1
σs
cs

(
zαsicsl

1−αs
ics φ1−αs

ics

)σs−1
σs (65)

⇒ l
1−(1−αs)σs−1

σs
ics =

σs − 1

σs
(1− αs)k

1
σs
cs w

−1
icsφ

(1−αs)σs−1
σs

ics z
αs

σs−1
σs

ics (66)

⇒ lics =

[
σs − 1

σs
(1− αs)k

1
σs
cs

] 1

1−(1−αs)σs−1
σs z

αs
σs−1
σs

1−(1−αs)σs−1
σs

ics

(
w−1
icsφ

(1−αs)σs−1
σs

ics

) 1

1−(1−αs)σs−1
σs (67)

which can be simplified as:

lics = k̃cs(kcs)z
αs(σs−1)

1+αs(σs−1)

ics φ̃ics(φics, wics) (68)

with k̃cs a function only of kcs, so common to all plants within a city-sector pair, and
φ̃ics a function of plant specific productivity and wage shocks.

Using the previous relationship, I estimate:

log licst = β0s + β1s log zicst + µt + ρics + εicst (69)

to retrieve β1s = αs(σs−1)
1+αs(σs−1)

. In introduce time fixed-effects, µt, and plant fixed effects,
ρics.

However, unobserved shocks on productivity and wages at the plant level are im-
plicitly included in the residual εicst and are correlated with input use licst and zicst, OLS
estimates are biased. This is a sort of “transmission bias” which is frequent in the litera-
ture estimating production functions. Th only difference here is that I do not estimate the
production function using revenues on the left-hand side. This is due to not observing rev-
enues at the plant level but only at the firm level. Indeed, I also only observe emissions
of atmospheric pollutants at the plant level for subsets of plants within firms. Using plant
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and firm level observations in the same equation would force me to drop observations from
multi-plants firms. As a result, the estimation sample would be too small.

I rely on an IV approach to estimate β1s. I build an instrument that uses exogenous
shocks on fuel prices as source of variation of plant-level emissions. This instrument is a
fixed-weight energy price index that measures the plant-specific exposure to variation in
fuels prices based on each plant distribution of energy consumption across fuel types in the
first period where it is observed. I build on Sato et al. (2019) to compute this instrumental
variable.

FEPIist =
∑

f∈Ωfuels

ωf,ist0pf,st (70)

where FEPIist is the plant-specific energy price index build from plant i share of en-
ergy expenditures in fuels f ∈ Ωfuels (coal, natural gas, electricity, etc.) in period t0 and pf,st

the specific fuel price common to all plants in sector s in period t. The exclusion restriction
requires in this case that plant specific shares of expenditures across fuels are not correlated
with unobserved shocks that are included in εicst. Given (68), shocks in the residual only
comes from demand shocks that are common to all plants, shocks on plant specific wage
and shocks on plant specific productivity. Therefore, the exclusion restriction is, in this case,
likely to be verified.
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A.6 Application to France Appendix

A.6.1 Sources of Equilibrium Data

Empirical Distribution of Wages Across Commuting Zones: I use the distribution of av-
erage hourly wages at the commuting zone level for 2012 from the INSEE dataset publicly
available at https://www.insee.fr/fr/statistiques/2021266. This data is aggre-
gated geographically by the INSEE using worker level data from the Social Data Annual
Declaration (DADS - Déclaration annuelle des données sociales). I use the 2010 commuting
zones (Zones d’Emploi) definition and normalize mean hourly local wages so that the aver-
age over all commuting zones is equal to one.

Empirical Distribution of Populations Across Commuting Zones: I use the distribution
of working population at the “Communes” level for 2012 from the INSEE dataset publicly
available at https://www.insee.fr/fr/statistiques/2128672. The “Communes”
is one of the most disaggregated administrative geographic unit in France. There are around
36,000 of them over the territory. The 2010 commuting zone’s (Zones d’Emploi) definition is a
partition of the set of French “Communes” in around 300 areas where inhabitants both work
and live. I use the correspondence table between “Communes” and Zones d’Emploi from the
INSEE and publicly available at https://www.insee.fr/fr/information/2114596.
I sum working populations at the “Communes” level to get aggregated working populations
at the Zones d’Emploi level. Finally I normalize local populations so that the total national
working population over the whole set of commuting zones is equal to one.

Empirical Distribution of Emissions Across Commuting Zones: I use data from the Na-
tional Spatialized Inventory (“Inventaire National Spatialisé”) which is built by the French
ministry in charge of environmental issues. The inventory is publicly available at http:
//emissions-air.developpement-durable.gouv.fr/. I exported data for the 2012
platform (data is also available for 2004 and 2007) for PM10, PM2.5, SO2, NOx and COVNM.
These datasets provide amounts of pollutants emitted disaggregated at the “Communes”
level and across broad sectors of activities following the Selected Nomenclature for Air
Pollution (SNAP). I aggregate emissions at the commuting zone level by using the corre-
spondence table corresponding to the 2010 definition of commuting zones and summing
emissions within commuting zones across “Communes”. I keep emissions from codes 3 and
4 of the SNAP which correspond to emissions from industrial combustion plants and indus-
trial processes without combustion. These two codes broadly correspond to emissions due
to the manufacturing industries. I aggregate over these two emission sectors by summing
emissions. Figure(16) displays the correlation between levels of emissions of available pol-
lutants. One can observe that the correlation is pretty strong. I only retain the distribution
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of PM10 emissions as the empirical data for the distribution of my model’s representative
pollutant across commuting zones.
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Figure 16: Correlation Between Emissions of Harmful Industrial Pollutants at the
Commuting Zone Level

A.6.2 Descriptive Statistics on Equilibrium Data

A.6.3 Descriptive Statistics on Computed Local Characteristics
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Wages Populations PM2.5 Emissions

count 303.000 303.000 303.000
mean 1.000 0.003 1.000

std 0.101 0.009 1.072
min 0.847 0.000 0.027
25% 0.938 0.001 0.352
50% 0.973 0.001 0.697
75% 1.037 0.003 1.256
max 1.585 0.136 9.830

Table 9: Descriptive Statistics on the Spatial Distributions of Wages, Populations and
Emissions across French Cities

Highest Populations Highest Wages Highest Emissions

Paris Saint-Quentin-en-Yvelines Dunkerque
Lyon Paris Thionville

Toulouse Saclay Bordeaux
Roissy - Sud Picardie Rambouillet Istres - Martigues

Bordeaux Versailles Nantes
Marseille - Aubagne Poissy Toulouse

Saclay Cergy Saint-Dié-des-Vosges
Nantes Marne-la-Vallée Lyon

Lille Créteil Marseille - Aubagne
Rennes Aix-en-Provence Nancy

Table 10: Top Ten Cities with Highest Populations, Wages and Emissions

Lowest Populations Lowest Wages Lowest Emissions

Sartène - Propriano Saint-Flour Corte
Corte Mauriac Issoudun

Ghisonaccia - Aléria Sartène - Propriano Loches
Le Blanc Le Blanc Figeac
Ambert Sarlat-la-Canéda L’Aigle

Calvi - L’Île-Rousse Brioude Vire
Loches Lozère Menton - Vallée de la Roya

Issoudun Villeneuve-sur-Lot Ghisonaccia - Aléria
Avallon Saint-Amand-Montrond Le Blanc

Porto-Vecchio Ussel Mauriac

Table 11: Bottom Ten Cities with Lowest Populations, Wages and Emissions
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Amenities Productivities Emission Costs

count 303.000 303.000 303.000
mean 0.003 1.000 1.000

std 0.010 0.160 1.173
min 0.000 0.785 0.075
25% 0.000 0.906 0.521
50% 0.000 0.956 0.812
75% 0.002 1.045 1.153
max 0.087 2.044 18.059

Table 12: Descriptive Statistics on the Spatial Distributions of Amenities, Productivities and
Emission Costs across French Cities

Highest Amenities Highest Productivities Highest Emission Costs

Bordeaux Saint-Quentin-en-Yvelines Paris
Dunkerque Paris Saclay

Nantes Saclay Orly
Lyon Rambouillet Marne-la-Vallée

Marseille - Aubagne Versailles Créteil
Toulouse Poissy Cergy
Avignon Cergy Lille

Roissy - Sud Picardie Marne-la-Vallée Poissy
Nancy Créteil Lyon
Rennes Aix-en-Provence Cannes - Antibes

Table 13: Top Ten Cities with Highest Amenities, Productivities and Emission Costs

Lowest Amenities Lowest Productivities Lowest Emission Costs

Saint-Quentin-en-Yvelines Saint-Flour Saint-Dié-des-Vosges
Corte Mauriac Dunkerque

Versailles Sartène - Propriano Thionville
Rambouillet Villeneuve-sur-Lot Istres - Martigues

Issoudun Sarlat-la-Canéda Maurienne
Loches Brioude La Teste-de-Buch
L’Aigle Lozère Sartène - Propriano
Figeac Le Blanc Péronne

Étampes Saint-Amand-Montrond Dole
Ghisonaccia - Aléria Bressuire Jonzac - Barbezieux-Saint-Hilaire

Table 14: Top Ten Cities with Lowest Amenities, Productivities and Emission Costs
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Figure 17: Histograms of Spatial Distributions of Wages, Populations and Emissions across
French Cities
All variables are in log.
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Figure 18: Cumulative Distributions of Populations and Emissions across French Cities
Cities are ranked by size, from smallest to largest, and the normalized cumulative sum of
populations and emissions is plotted.
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Figure 19: Spatial Distributions of Wages, Populations and Emissions across French Cities64
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Figure 20: Histograms of Spatial Distributions of Wages, Populations and Emissions across
French Cities
All variables are in log.
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Figure 21: Spatial Distributions of Amenities, Productivities and Emission Costs across
French Cities
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