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Abstract

This article proposes the first characterization of dynamic completeness in
markets with frictions. In frictionless markets with no available arbitrage op-
portunity, the fundamental theorem of asset pricing states that dynamic com-
pleteness is equivalent to having a unique normalized vector of strictly positive
event prices under which every investment makes zero profit. First, we show
that it is also equivalent to the weaker condition that a supporting event price
vector with a zero first-period price does not exist. Then, we demonstrate that
there is no arbitrage opportunity in multi-period security markets with bid–ask
spreads if, and only if, frictionless no-arbitrage markets support them. Even-
tually, we prove that the absence of a supporting event price vector with a
zero first-period price also characterizes dynamic completeness in markets with
bid–ask spreads. On the other hand, we show that having a unique normalized
vector of strictly positive event prices supporting these markets is unnecessary
for dynamic completeness.

Keywords— security markets microstructure, complete markets, incomplete markets,
efficiency, financial innovation, risk sharing, friction, bid–ask spread, present value, market
spanning

1 Introduction

This article proposes the first characterization of dynamic completeness in the presence

of market frictions. We demonstrate that markets with bid–ask spreads are dynamically

complete if, and only if, every frictionless supporting markets have a non-zero event-0 price.
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Dynamic completeness is an eminently desirable property of financial security markets

that requires that every contract or security be traded (possibly by replicating them). It

ensures that market participants perfectly transfer risk and smooth their consumption in-

tertemporally. Over the past century, financial markets have produced a multitude of inno-

vative products, including many new forms of derivatives, alternative risk transfer products,

exchange-traded funds, and variants of tax-deductible equity, to increase risk-sharing op-

portunities (Van Horne (1985)) and move financial markets towards dynamic completeness

(see Allen and Gale (1994) and Tufano (2003)). For example, option contracts reduce signif-

icantly the number of securities necessary for dynamic completeness (see Ross (1976), Bree-

den and Litzenberger (1978), Friesen (1979), Green and Jarrow (1987), Nachman (1988),

Baptista (2003)). The remaining sources of dynamic incompleteness are explained by in-

formational problems such as moral hazard, adverse selection, unforecastable events, or the

existence of too many events (see Laffont (1989)), short-selling restrictions (see Raab and

Schwager (1993)), transaction costs (see Merton (1989) and Ross (1989)), taxes or fees.

However, these frictions do not necessarily result in markets incompleteness. For exam-

ple, Raab and Schwager (1993) provides a sufficient condition for market completeness in

2−period security markets with short-selling restrictions.

This paper demonstrates that the principal transaction cost when trading stocks, fu-

tures contracts, options, or currency pairs (see Kumar (2004)), the bid–ask spread, does

not necessarily result in dynamically incomplete markets. Actually, in some cases, sup-

pressing bid–ask spreads makes the markets dynamically incomplete (see example 2.1).

Bid–ask spreads represent the remuneration of market makers, key participants of security

markets who provide bid and ask offers for securities resulting in a significant improve-

ment of markets’ liquidity. The size of bid–ask spreads has been explained by the extent

of the competition between market makers (see Tinic and West (1972) Stoll (1978), Ho

and Stoll (1983) and Biais, Martimort and Rochet (2000)), by inventory consideration (see

Tinic (1972), Garman (1976), Amihud and Mendelson (1980) and Ho and Stoll (1981)), by

adverse selection arising from asymmetric information (see Bagehot (1971), Copeland and

Galai (1983), Glosten and Milgrom (1985), Kyle (1985) and Glosten (1989)), by the abil-

ity of market makers and investors to find counterparties (see Demsetz (1968) and Duffie,

Gârleanu and Pedersen (2005)), by the distribution of securities holdings (see Lagos and

Rocheteau (2009)), and by the extent of the deployment of algorithmic trading (see Hender-

shott, Jones and Menkveld (2011)). Additionally, Cohen, Maier, Schwartz and Whitcomb

(1981) and Martins-da-Rocha and Vailakis (2010) prove the existence of bid–ask spreads at

equilibrium in financial security markets models.

The characterization of dynamic completeness is well-known in frictionless markets (see

Magill and Quinzii (1996) or LeRoy and Werner (2014)). In a standard frictionless econ-

omy with no arbitrage opportunity available, dynamic completeness is equivalent to having
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a unique normalized vector of strictly positive event prices under which every investment

makes a zero profit. First, we notice that a payoff stream can be generated equivalently by

a portfolio strategy (which records the holding in each security at the end of each period)

or by a trading strategy (which records the orders passed in each event). However, trading

strategies outperform portfolio strategies in the analysis of financial markets in the presence

of frictions because they permit the use of more straightforward mathematical methods in-

volving positive spanning. We demonstrate that the set of payoff streams that a trading

strategy can generate is equal to the positive span of the payoff matrix. Therefore, we pro-

pose a new characterization of the absence of arbitrage opportunity using trading strategies

in multi-period security markets with bid-ask spreads. We show that no-arbitrage is equiva-

lent to the existence of supporting frictionless markets with no-arbitrage opportunity. Then,

we demonstrate the equivalence between the uniqueness of the vector of strictly positive

event prices supporting the market and the weaker condition that a supporting event price

vector with a zero first-period price does not exist, in frictionless markets with no arbitrage

opportunity. Finally, we show that the uniqueness of the vector of event prices supporting

the economy is not necessary for dynamic completeness in the presence of friction. On the

other hand, we prove that the absence of supporting event prices vector with zero initial

event price remains equivalent to dynamic completeness in markets with bid-ask spreads.

This paper is organized as follows. For the sake of exposition, we first present our

results in a particular case of a 3−period security market with bid–ask spread in Section 2.

We introduce the concept of trading strategies and present our characterization of dynamic

completeness in this setting. We also determine the minimal number of traded securities

necessary for dynamic completeness. Our results are illustrated graphically both in section

2.6 and 2.7. In section 2.8, we provide examples of security markets that are dynamically

complete with bid–ask spreads. In Section 3, we extend the results of Section 2 to the

general case of multi-period security markets with bid–ask spreads. We provide examples

of applications of the results in the conclusion.

2 Dynamic completeness in 3-period markets with

bid–ask spreads

This section presents the characterization of dynamic completeness in a particular case

of 3-period security markets with bid–ask spreads. We do not present first the results in

a 2−period security markets as is usually the case because the presence of bid–ask spread

has no influence on completeness in these markets (see Remark 2.1) while it is no longer

the case in multi-period security markets as the prices at which trades take place impacts

future payoffs.

Throughout the section, we assume there is no restriction to short selling and no limi-
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tation to the quantity of security purchased and sold at the initial period. We additionally

assume agents can infinitely split their orders, and they share the same information struc-

ture. Hence incompleteness cannot result from the presence of one of these frictions. We

present the general multiperiod case in Section 3.

2.1 The Information Structure

We represent uncertainty about the future by a set of events that can happen at each

period. We denote ξt an event happening at period t. We denote it ξ when the precision

is unnecessary. At period 0, agents do not know which events will realize in the future. At

period 1, they know that only a subset of events may happen at period 2. We represent the

unfolding of events in the following event tree.

ξ0

ξd1
ξdd2

ξdu2

ξu1
ξud2

ξuu2

It should be interpreted in the following manner, if ξu1 realizes then only events ξuu2 and ξud

can happen at period 2. We denote Ξ0 the set containing only the event ξ0, Ξ1 the set of

events {ξu1 , ξd1} and Ξ2 the set of events {ξuu2 , ξud2 , ξdu2 , ξdd2 }.

2.2 The Market Structure

We consider markets in which J securities are traded at period 0 and period 1. To each

security j, corresponds a dividend stream represented by a vector xj ∈ R6. We denote xj(ξ)

the dividend paid by security j in event ξ ∈ Ξ1 ∪ Ξ2 and x(ξ) ∈ RJ the dividends paid by

each securities in event ξ ∈ Ξ1 ∪ Ξ2.

There are two types of actors participating in the markets: investors and market makers.

Market makers actively quote two-sided markets in a particular security, providing bids and

asks. The bid–ask spread, the difference between the buy price and the selling price they

propose, compensate them for their services, and the risk they bear for holding securities

during several periods. Investors purchase and sell securities to a market maker. They buy

at the ask price and sell at the bid price (a market maker buys at the bid price and sells

at the ask price). We adopt their perspective in the following. The ask price of security

j, denoted paj (ξ), represents the amount spent by an investor to purchase this security in

the event ξ ∈ Ξ1 ∪ Ξ2. Its bid price, pbj(ξ), represents the amount received by the investor

when he sells security j in event ξ ∈ Ξ1 ∪ Ξ2. We have period 2 prices for practicality. We
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set them equal to 0, that is paj (ξ2) = pbj(ξ2) = 0 for all ξ2 ∈ Ξ2 and all security j. The

spread between the ask and the bid price is the bid–ask spread. We denote pa(ξ) ∈ RJ

the vector of securities ask prices and pb(ξ) ∈ RJ the vector of securities bid prices in an

event ξ ∈ Ξ1 ∪ Ξ2. We present the unfolding of the dividends and prices of xj in a tree by

associating a triplet (xj(ξ), p
a
j (ξ), p

b
j(ξ)) to each non-initial node ξ ∈ Ξ1 ∪ Ξ2.

j (
xj
(
ξd1
)
, paj
(
ξd1
)
, pbj
(
ξd1
)) (

xj(ξ
dd
2 ), 0, 0

)
(
xj(ξ

du
2 ), 0, 0

)
(
xj(ξ

u
1 ), paj (ξ

u
1 ), pbj(ξ

u
1 )
) (

xj
(
ξud2

)
, 0, 0

)(xj(ξ
uu
2 ), 0, 0)

At each period, agents constitute a portfolio of securities. We denote h(ξ) ∈ RJ the portfolio

held in an event ξ ∈ Ξ0 ∪Ξ1 ∪Ξ2. The coordinates of h(ξ) can be either positive, negative,

or zero. Positivity of the jth coordinate of h(ξ) means that the agent owns security j.

Negativity means that she has sold j and owes its dividend to its owner. The triplet

h = (h0, h1, h2) is a trading strategy where ht, t = 0, 1, 2, is a vector taking coordinates

h(ξt) for all ξt ∈ Ξt.

2.3 Dynamic Completeness and the Set of Available Payoffs

A trading strategy’s payoff in a particular event represents the net amount received by

the agent after trading in the markets at this period. She first receives the dividends of the

portfolio she had constituted at the previous period. Next, she trades on the markets. These

two components enter the payoff she receives. Formally, the payoff in an event ξ1 ∈ Ξ1 of a

trading strategy h is denoted z(h, pa, pb)(ξ1). It is equal to

dividends︷ ︸︸ ︷
x(ξ1)h(ξ0)−

sales revenue︷ ︸︸ ︷
pb(ξ1) min(h(ξ1)− h(ξ0)), 0)−

purchases cost︷ ︸︸ ︷
pa(ξ1) max(h(ξ1)− h(ξ0), 0) (1)

where for (x, y, z) ∈ Rk×Rk×Rk, z = max(x, y) means zi = max(xi, yi) for every i = 1, . . . , k

and z = min(x, y) means zi = min(xi, yi) for every i = 1, . . . , k. Since there is no market

opened at period 2, the payoff of a trading strategy in an event ξ2 ∈ Ξ2 represents solely

the difference between the dividends received and due. Formally, the payoff in an event

ξ2 ∈ Ξ2 of a trading strategy h is denoted z(h, pa, pb)(ξ2). It is equal to x(ξ2)h(ξ−2 ) where

ξ−2 denotes the immediate predecessor of event ξ2.

The set of payoff streams that are replicated by portfolio strategies is the set M(p)

equal to {
z ∈ R6 | ∃h s.t. z(ξt) = z(h, pa, pb)(ξt) for all t = 0, 1, 2

}
.
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Markets are dynamically complete if every payoff stream can be replicated. Formally,

markets are dynamically complete if M(p) = R6. In frictionless markets, we call this

set the asset span because it is equal to the span (in the mathematical sense) of a set of

payoff streams. In our context, this set is not a span due to bid–ask spreads. Therefore, we

call it the set of available payoff streams. In the following section, we provide an equivalent

definition for the set of available payoff streams.

2.4 Trading Strategies

First, we introduce the concept of trading strategies. A trading strategy records the

unfolding of market orders placed in each event. We denote ba(ξ) ∈ RJ+ the ask orders

placed in event ξ ∈ Ξ0 ∪ Ξ1 and bb(ξ) ∈ RJ+ the bid orders placed in event ξ ∈ Ξ0 ∪ Ξ1.

We emphasize the fact that orders exclusively admit non-negative1 value as opposed to

portfolios that equally admit negative values. Since a portfolio is equal to the sum of ask

and bid orders placed at the previous periods, we can recover the orders placed on the

market from a portfolios strategy and vice-versa (see also Proposition 2.1). We notice that

to a given portfolio strategy h, we can associate the orders placed in the markets in the

following manner

ba(ξ0) =

ask orders placed at t=0︷ ︸︸ ︷
max(h(ξ0), 0) , bb(ξ0) =

bid orders placed at t=0︷ ︸︸ ︷
−min(h(ξ0), 0)

and

ba(ξ1) =

ask orders placed in event ξ1︷ ︸︸ ︷
max(h(ξ1)− h(ξ0), 0) , bb(ξ1) =

bid orders placed in event ξ1︷ ︸︸ ︷
−min(h(ξ1)− h(ξ0), 0) for all ξ1 ∈ Ξ1.

At period 0, an investor can place 2J different types of orders (the factor 2 stands for the

ask and bid orders). At period 1, an investor can place 4J different order types (since there

are 2 events). Therefore, an investor can place a total of 6J different market orders, and a

trading strategy is a vector b of R6J
+ equal to

ba(ξ0)

bb(ξ0)

ba(ξu1 )

bb(ξu1 )

ba(ξd1)

bb(ξd1)


.

1We implement the following convention: positive means strictly superior to zero, non-negative
means superior or equal to 0, non-positive means inferior or equal to 0 and negative means strictly
inferior to 0.
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Each market order endows its issuer with a particular payment stream between periods

0 and 2. The payment stream of an ask order placed in event ξt, 0 6 t 6 T − 1 on security

j corresponds to the payment carried out in event ξt by the buyer to purchase the security,

the dividends he receives in the successor events and 0 otherwise. Similarly, the payment

stream of a bid order placed ξt, 0 6 t 6 T − 1 on j is equal to the payment received by the

seller of j in this event, the dividends paid to the buyer in the successor events, and zero

otherwise. For example, the payment stream of a buy order placed on security j in event

ξ0 is a vector φ̂aj (ξ0) equal to

−paj (ξ0) payment in event ξ0

xj(ξ
u
1 ) ξu1

xj(ξ
d
1) ξd1

xj(ξ
uu
2 ) ξuu2

xj
(
ξud2

)
ξud2

xj(ξ
du
2 ) ξdu2

xj(ξ
dd
2 ) ξdd2


.

Similarly, the payment stream of a sell order placed on security j in event ξu1 is a vector

φ̂bj(ξ
u
1 ) equal to 

0 payment in event ξ0

pbj(ξ
u
1 ) ξu1

0 ξd1

−xj(ξuu2 ) ξuu2

−xj
(
ξud2

)
ξud2

0 ξdu2

0 ξdd2


.

We regroup the payment streams of bid and ask orders issued in event ξ0 in a 7 × 2J

matrix φ(ξ0) equal to



φ̂a1(ξ0) . . . φ̂aJ(ξ0) φ̂b1(ξ0) . . . φ̂bJ(ξ0)

ξ0 −pa1(ξ0) . . . −paJ(ξ0) pb1(ξ0) . . . pbJ(ξ0)

ξu1 x1(ξu1 ) . . . xJ(ξu1 ) −x1(ξu1 ) . . . −xJ(ξu1 )

ξd1 x1(ξd1) . . . xJ(ξd1) −x1(ξd1) . . . −xJ(ξd1)

ξuu2 x1(ξuu2 ) . . . xJ(ξuu2 ) −x1(ξuu2 ) . . . −xJ(ξuu2 )

ξud2 x1

(
ξud2

)
. . . xJ

(
ξud2

)
−x1

(
ξud2

)
. . . −xJ

(
ξud2

)
ξdu2 x1(ξdu2 ) . . . xJ(ξdu2 ) −x1(ξdu2 ) . . . −xJ(ξdu2 )

ξdd2 x1(ξdd2 ) . . . xJ(ξdd2 ) −x1(ξdd2 ) . . . −xJ(ξdd2 )


.

Similarly, we regroup the payment streams of bid and ask orders issued in event ξu1 ∈ Ξ1
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in a 7× 2J matrix φ̂(ξu1 ) equal to



φ̂a1(ξu1 ) . . . φ̂aJ(ξu1 ) φ̂b1(ξu1 ) . . . φ̂bJ(ξu1 )

ξ0 0 . . . 0 0 . . . 0

ξu1 −pa1(ξu1 ) . . . −paJ(ξu1 ) pb1(ξu1 ) . . . pbJ(ξu1 )

ξd1 0 . . . 0 0 . . . 0

ξuu2 x1(ξuu2 ) . . . xJ(ξuu2 ) −x1(ξuu2 ) . . . −xJ(ξuu2 )

ξud2 x1

(
ξud2

)
. . . xJ

(
ξud2

)
−x1

(
ξud2

)
. . . −xJ

(
ξud2

)
ξdu2 0 . . . 0 0 . . . 0

ξdd2 0 . . . 0 0 . . . 0


.

And, we regroup the payment streams of bid and ask orders issued in event ξd1 ∈ Ξ1 in a

7× 2J matrix φ̂(ξd1) equal to



φ̂ax
(
ξd1
)

. . . φ̂aJ
(
ξd1
)

φ̂bx
(
ξd1
)

. . . φ̂bJ
(
ξd1
)

ξ0 0 . . . 0 0 . . . 0

ξu1 0 . . . 0 0 . . . 0

ξd1 −pa1
(
ξd1
)

. . . −paJ
(
ξd1
)

pb1
(
ξd1
)

. . . pbJ
(
ξd1
)

ξuu2 0 . . . 0 0 . . . 0

ξud2 0 . . . 0 0 . . . 0

ξdu2 x1(ξdu2 ) . . . xJ(ξdu2 ) −x1(ξdu2 ) . . . −xJ(ξdu2 )

ξdd2 x1(ξdd2 ) . . . xJ(ξdd2 ) −x1(ξdd2 ) . . . −xJ(ξdd2 )


.

The payment matrix P̂ is a 7×6J matrix whose columns represent the payments across

all the events of a one unit trade order placed on a security at a non-terminal event(
φ̂(ξ0) φ̂(ξu1 ) φ̂(ξd1)

)
.

A trading strategy b ∈ R6
+ generates the payment stream ẑ ∈ R7 when ẑ = P̂b. We call

payment positive span the set of payments that a trading strategy can generate. We denote

it B̂(pa, pb). We have

B̂(pa, pb) = {ẑ ∈ R7 | ẑ = P̂b for some b ∈ R6J
+ }.

The payment matrix is different from the payoff matrix which represents the payments

across all future events of a one-unit trade order placed on a security at a non-terminal event.

It is the concatenation of the payoff matrix with the period 0 payments of every order. We

denote φ(ξt) the sub-matrix formed by selecting every rows of the matrix φ̂(ξt) except the

first. It represents the payoff streams of bid and ask orders placed in the non-terminal event
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ξt. We denote P the payoff matrix. It is a 6× 6J equal to(
φ(ξ0) φ(ξu1 ) φ(ξd1)

)
.

We denote Φ the set of columns of the payoff matrix P.

Remark 2.1. In 2−period markets the payoff matrix only depends on securities dividends.

Therefore the presence of a bid–ask spread does not modify the characterization of com-

pleteness. 2−period markets are complete if, and only if, the rank of the payoff matrix is

equal to the number of states of nature, here 4.

A trading strategy b ∈ R6
+ generates the payoff stream z ∈ R6 when z = Pb. We call

payoff positive span the set of payoff streams that can be generated by a trading strategy.

We denote it B(pa, pb). We have

B(pa, pb) = {z ∈ R6 | z = Pb for some b ∈ R6J
+ }.

Since a trading strategy exclusively admits non-negative coordinates, B̂(pa, pb) is the positive

span of the columns of the payment matrix P̂ and B(pa, pb) is the positive span of the

columns of the payoff matrix P (hence their name). Indeed, Davis (1954) defines the

positive span of a finite set of vectors V = {v1, . . . , vk} ⊂ Rn has the set p-span(V ) equal

to

p-span(V ) := {λ1v1 + . . . λkvk | λi > 0 for all i = 1, . . . , k}.

We say that a finite set V ⊂ Rn positively span Rn if p-span(V ) = Rn.

Remark 2.2. To generalize frictionless methods to markets with bid–ask spreads, it is also

possible to separate a portfolio strategy between the ask portfolio strategy, consisting of the

ask orders placed in the markets, and the bid portfolio strategy, consisting of the bid orders

placed in the markets. However, the monotonicity of these strategies with time complicates

the study since the set of payoff streams generated by a bid–ask portfolio strategy is not a

positive span.

We demonstrate in the following proposition that a payoff stream is generated by a

trading strategy if, and only if, a portfolio strategy exists that replicates it. Therefore, the

payoff positive span is equal to the set of available payoff streams.

Proposition 2.1. The set of available payoff streams is equal to the payoff positive span.

Proof. Fix a vector z ∈ M(pa, pb). We are going to show z ∈ B(pa, pb). By assumption,

there exists a portfolio strategy h such that z(ξ) = z(h, pa, pb)(ξ) for all ξ ∈ Ξ. Recall from

Equation 1 that

z(h, pa, pb)(ξ1) = x(ξ1)h(ξ0)− pb(ξ1) min(h(ξ1)− h(ξ0)), 0)− pa(ξ1) max(h(ξ1)− h(ξ0), 0)
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for all ξ1 ∈ Ξ1 and

z(h, pa, pb)(ξ2) = x(ξ2)h(ξb2)

for all ξ2 ∈ Ξ2. Let b ∈ R6J be a trading strategy associated with h that is, such that{
ba(ξ0) = max(h(ξ0), 0)

bb(ξ0) = −min(h(ξ0), 0)

and {
ba(ξ1) = max(h(ξ1)− h(ξ0), 0)

bb(ξ1) = −min
(
h(ξ1)− h

(
ξb0
)
, 0
)

for all ξ1 ∈ Ξ2. Note that ba(ξ2) and bb(ξ2) are not defined since there is no trading taking

place at time 2. We have h(ξ0) = ba(ξ0)− bb(ξ0) and

h(ξ1) = h(ξ0) + ba(ξ1)− bb(ξ1)

for every ξ1 ∈ Ξ1. Hence,

z(ξ1) = x(ξ1)(ba(ξ0)− bb(ξ0))− pa(ξ1)ba(ξ1) + pb(ξ1)bb(ξ1)

for all ξ1 ∈ Ξ1 and

z(ξ2) = x(ξ2)
(
ba(ξ0)− bb(ξ0) + ba(ξ1)− bb(ξ1)

)
for all ξ2 ∈ Ξ2. Hence, we have

z = φ(ξ0)

(
ba(ξ0)

bb(ξ0)

)
+
∑
ξ1∈Ξ1

φ(ξ1)

(
ba(ξ1)

bb(ξ1)

)
.

Hence, z = Pb and z ∈ B(pa, pb).

Now fix a vector z ∈ B(pa, pb). We are going to show that z belongs to M(pa, pb). By

assumption, there exists b ∈ R6J
+ such that z = Pb. It is equivalent to the existence of

vectors ba(ξ) ∈ RJ+ and bb(ξt) ∈ RJ+ for all ξ ∈ ξ0 ∪ Ξ1 such that

φ(ξ0)

(
ba(ξ0)

bb(ξ0)

)
+
∑
ξ1∈Ξ1

φ(ξ1)

(
ba(ξ1)

bb(ξ1)

)
= z.

It implies the following equations

z(ξ1) = x(ξ1)(ba(ξ0)− bb(ξ0))− pa(ξ1)ba(ξ1) + pb(ξ1)bb(ξ1)
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for all ξ1 ∈ Ξ1 and

z(ξ2) = x(ξ2)
(
ba(ξ0)− bb(ξ0) + ba(ξ1)− bb(ξ1)

)
for all ξ2 ∈ Ξ2. We let h be a portfolio strategy such that h(ξ0) = ba(ξ0)− bb(ξ0) and{

max(h(ξ1)− h(ξ0), 0) = ba(ξ1)

min(h(ξ1)− h(ξ0), 0) = −bb(ξ1)

for every ξ1 ∈ Ξ1. We obtain

z(ξ1) = d(h(ξ0))− pb(ξ1) min(h(ξ1)− h(ξ0), 0)− pa(ξ1) max(h(ξ1)− h(ξ0), 0)

for all ξ1 ∈ Ξ1 and

z(ξ2) = x(ξ2)h(ξ1)

for all terminal event ξ2 ∈ Ξ2. Therefore z ∈M(pa, pb).

Proposition 2.1 shows that markets are dynamically complete if for every payoff stream

there exists a trading strategy that generates it. Formally, markets are dynamically com-

plete if B(pa, pb) = R6.

2.5 No-arbitrage

Dynamic completeness is characterized in the frictionless case under a mild equilibrium

property, the absence of arbitrage opportunity. To extend this characterization to markets

with frictions, we define an arbitrage opportunity for a trading strategy instead of a portfolio

strategy. We denote Rn++ the set of vectors with strictly positive coordinates and we denote

C? = R+×Rk+\0 the set of positive payment streams. There exists an arbitrage opportunity

in the markets if there exists a trading strategy b ∈ R6J
+ generating a non-negative payment

stream with at least one strictly positive payment, that is such that P̂b > 0. Additionally, a

vector µ ∈ R7 is said to support the markets when for every z ∈ B̂(pa, pb), we have z>µ 6 0.

We show in Theorem 2.1 that there is no arbitrage opportunity in the markets if, and only

if, a vector of strictly positive event prices supports the markets.

Theorem 2.1. There is no arbitrage opportunity in a frictionless market if, and only if, a

vector of strictly positive event prices supports the market.

Proof. First we assume there is no arbitrage opportunity, we are going to show that there

exists a vector of strictly positive event prices such that for every z ∈ B̂(pa, pb), we have

z>µ 6 0. No-arbitrage implies there exists no trading strategy b ∈ R6J
+ such that P̂b ∈ C?.

Therefore, we have B̂(pa, pb) ∩ C? = ∅. In particular, let ∆ = {µ ∈ R7
+ |
∑6

i=0 µi = 1}, we

11
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have B̂(pa, pb) ∩∆ = ∅. The set B̂(pa, pb) is the positive span of the columns of the payoff

matrix. Hence, it is a closed convex set. Additionally, ∆ is compact. Therefore the theorem

of strict separation of convex applies and there exists µ ∈ R7 such that

sup
z∈B̂(pa,pb)

z>µ < inf
z∈∆

z>µ.

Suppose that µξ 6 0 for some event ξ ∈ Ξ0 ∪ Ξ1 ∪ Ξ2. Consider µ′ ∈ ∆ such that µ′ξ = 1

and µ′ξ′ = 0 for every ξ′ 6= ξ. Then, µ′>µ 6 0 so that

sup
z∈B̂(pa,pb)

z>µ < 0,

contradicting z>µ = 0 for z = 0. It remains to show that z>µ 6 0 for every z ∈ B̂(pa, pb).

Suppose there exists z′ ∈ B̂(pa, pb) such that z>µ′ > 0. Since B̂(pa, pb) is a positive span,

there exists α ∈ R+ such that αz′ ∈ B̂(pa, pb) and (αz′)>µ > minz∈∆ z
>µ, a contradiction.

Now, assume there exists µ ∈ R7
++ such that for every z ∈ B̂(pa, pb), we have z>µ 6 0.

We are going to show that there is no-arbitrage opportunity. Assume by contradiction

there exists a trading strategy b ∈ R6J
+ such that P̂b ∈ C?. Denote z̃ the payoff stream of

this trading strategy. By assumption, we have z′>µ 6 0 with µ ∈ R7
++ implying z′ = 0.

Therefore there is no arbitrage opportunity.

When there are frictions, supporting strictly positive event prices represents the exis-

tence of underlying no-arbitrage frictionless markets supporting the markets. The absence

of arbitrage opportunity implies that strictly positive event prices support securities prices,

in the sense that prices are greater than the weighted sum of expected payoffs for event

prices µ, that is, we have

µξ0p
a
j (ξ0) >

∑
ξ∈Ξ1∪Ξ2

µξxj(ξ) > µξ0p
b
j(ξ0)

µξu1 p
a
j (ξ

u
1 ) > µξuuxj(ξ

uu) + µξudxj(ξ
ud) > µξu1 p

b
j(ξ

u
1 ),

and

µξd1
paj (ξ

d
1) > µξduxj(ξ

du) + µξddxj(ξ
dd) > µξd1

pbj(ξ
d
1)

for every security j ∈ J . Therefore trading strategies permit a straightforward generaliza-

tion of the fundamental theorem of asset pricing to markets with bid–ask spreads. When

markets are frictionless, the payoffs stream of an ask order is the opposite of the payoff

stream of the bid order on the same security in the same event. Hence, the vector of event

prices supports the market with an equality sign and Theorem 2.1 coincides with the fun-

damental theorem of asset pricing (Harrison and Kreps (1979), Magill and Quinzii (1996))

expressed for trading strategies instead of portfolio strategies.
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2.6 Characterization of Dynamic Completeness

In the absence of bid–ask spread the market presented in the previous section is dy-

namically complete only if at least 2 securities are traded. Proposition 2.2 shows that the

presence of a bid–ask spread does not increase the number of traded securities necessary

for dynamic completeness.

Proposition 2.2. Markets are dynamically complete only if at least 2 securities are traded.

Proof. By Proposition 2.1 markets are dynamically complete if B(pa, pb) = R6. Then,

p-span(Φ) = R6. Hence as a consequence of Corollary 2.4 of Regis (2015) which states that

any positive spanning set of R6 contains a basis of R6, the payoff matrix must have at least

7 columns. It implies that at least J > 7
2(6+1−4) securities must be traded. Since J takes

only integer values, markets are dynamically complete only if J > 2.

As for frictionless markets, having 2 securities traded each period is not sufficient for

markets to be dynamically complete. Dynamic completeness also depends on the values

of each security dividend and price. In frictionless markets, under no-arbitrage, markets

are dynamically complete if, and only if, a unique normalized strictly positive event prices

vector supports the market. We show in the following theorem that the uniqueness of this

vector is equivalent to having exclusively non-zero period−0 event prices supporting the

market. A vector of event prices µ =

(
µξ0

µ̃

)
∈ R7 with µξ0 ∈ R and µ̃ ∈ R6 is said to have

a non-zero period−0 price if µξ0 6= 0.

Proposition 2.3. When markets are frictionless and admit no arbitrage opportunity, a

unique normalized vector of strictly positive event prices supports the market if, and only

if, every non-zero supporting event prices have a non-zero period−0 price.

Proof. First, we assume that there exists a unique normalized ν ∈ R7
++ such that ν>z = 0

for every z ∈ B̂(pa, pb). We are going to show that every supporting event prices have a

non-zero period−0 price. Assume by contradiction that there exist µ =

(
0

µ̃

)
∈ R7 \ {0}

with µ̃ ∈ R6 such that z>µ = 0 for every z ∈ B̂(pa, pb). Let ε > 0 be such that ν+εµ ∈ R7
++,

then (ν + εµ)>z = 0 for every z ∈ B(pa, pb) contradicting the uniqueness of ν.

Now, we assume that every µ =

(
µξ0

µ̃

)
∈ R7 \ {0} with µξ0 ∈ R and µ̃ ∈ R6 satisfying

z>µ = 0 for every z ∈ B̂(pa, pb) are such that µξ0 6= 0. We are going to show that there exists

a unique normalized ν ∈ R7
++ such that ν>z = 0 for every z ∈ B̂(pa, pb). Let ν =

(
νξ0

ν̃

)

with νξ0 ∈ R∗+ and ν̃ ∈ R6
++. Suppose by contradiction that there exists ν ′ =

(
ν ′ξ0
ν̃ ′

)
with
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ξ0

ξ1

pb

−pa

x

−x

: strictly positive normalized
supporting event prices

: B̂(pa, pb)

Figure 1: 2-period dynamically complete security market with no uncertainty and a single
traded security x.

ν ′ξ0 ∈ R∗+ and νξ0
′ ∈ R6

++ such that ν ′ 6= λν for every λ ∈ R+ and ν ′>z = 0 for every

z ∈ B(pa, pb). Let α ∈ R be such that νξ0 = αν ′ξ0 and (ν − αν ′)>z = 0 implying ν = αν ′, a

contradiction.

Figure 1 represents a dynamically complete (every payoff at period 1 can be traded at

period 0) 2−period security market with no uncertainty and a single traded security with a

bid–ask spread. The ξ0−axis represents the payment received at period 0, and the ξ1−axis

represents the payoff received at period 1. The black vectors represent the payoff streams

of bid and ask orders placed at periods 0 and 1. As illustrated in this figure, dynamic

completeness does not require that a unique vector of strictly positive event prices supports

the market when there are frictions. However, we demonstrate in Theorem 2.2 that every

supporting event prices vector must have a non-zero period-0 price.

Theorem 2.2. The following conditions are equivalent

i. Markets are dynamically complete;

ii. for every payoff stream q ∈ R6, there exists an order payoff stream φ ∈ Φ such that

q>φ > 0;

iii. every event price vector supporting the markets has a non-zero period−0 price.

Proof. The proof of i. equivalent to ii. follows from the characterization of positive spanning

sets of Davis (1954). For the sake of clarity, we present it in our context. Assume that

markets are dynamically complete. We are going to show that for every non-zero q ∈ R6,

there exists an order payoff stream φ ∈ Φ such that q>φ > 0. Assume by contradiction
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that there exists a payoff stream q ∈ R6 such that q>φ 6 0 for every φ ∈ Φ. Denote φi,

i = 1, . . . , 6J , the ith element of Φ and dynamic completeness implies that there exists a

trading strategy b ∈ R6J
+ such that z = Pb, that is

z =
6J∑
i=1

biφi

where bi is the ith coordinate of b. Moreover, z>z > 0 that is,

6J∑
i=1

(biφi)
>z > 0

implies that at least one element of the sum is positive. Hence there exists an order payoff

stream φi such that biφ
>
i z > 0, a contradiction. Therefore, for every non-zero q ∈ R6, there

exists an order payoff stream φ ∈ Φ such that q>φ > 0.

Then assume that for every payoff stream q ∈ R6 there exists an order payoff stream φ ∈
Φ such that q>φ > 0. We are going to show that markets are dynamically complete. Assume

by contradiction that markets are dynamically incomplete. It implies that there exists a

payoff stream z /∈ B(pa, pb), that is B(pa, pb) ∩ z = ∅. Therefore according to Rockafellar

(1970) Theorem 11.3, there exists a hyperplane containing the origin that properly separates

B(pa, pb) and z. Denote q′ its normal vector at the origin then for either q = q′ or q = −q′,
we have q>φ 6 0 for every φ ∈ Φ, a contradiction.

Now, we are going to show that ii. is equivalent to iii.. First, assume that for every

payoff stream q ∈ R6, there exists an order payoff stream φ ∈ Φ such that q>φ > 0. We

are going to show that every event prices µ =

(
µξ0

µ̃

)
∈ R7 with µξ0 ∈ R and µ̃ ∈ R6

satisfying z>µ 6 0 for every z ∈ B̂(pa, pb), are such that µξ0 6= 0. Let νξ0 ∈ R, ν̃ ∈ R6 and

let ν =

(
νξ0

ν̃

)
be such that z>ν 6 0 for every z ∈ B̂(pa, pb). By assumption, there exists

φ ∈ Φ such that φ>ν̃ > 0. It implies νξ0 6= 0.

Then, we assume that every event prices µ =

(
µξ0

µ̃

)
∈ R7 with µξ0 ∈ R and µ̃ ∈ R6

satisfying z>µ 6 0 for every z ∈ B̂(pa, pb), are such that µξ0 6= 0. We are going to show

that for every payoff stream q ∈ R6, there exists an order payoff stream φ ∈ Φ such that

q>φ > 0. Assume by contradiction that there exists ν̃ ∈ R6, such that φ>ν̃ 6 0 for every

φ ∈ Φ. Therefore, we have ν =

(
0

ν̃

)
∈ R7 such that z>ν 6 0 for every z ∈ B̂(pa, pb), a

contradiction.

We illustrate Theorem 2.2 in a simple 3−period market with no uncertainty in Figure
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ξ1

ξ2

1

1

−1

φa(ξ0)

φb(ξ0)

φa(ξ1)

1
2

: values of φb(ξ1) s.t. M(pa, pb) = R2

: p-span
(
φa(ξ0), φb(ξ0), φa(ξ1)

)

Figure 2: Geometry of a 3-period market with no uncertainty, no arbitrage opportunity,
and a single security xj = (0.5, 1) (that is, S = 1 and J = 1) with ask price equal to 0.5 at
period 1.

2 in Section 2.7. We provide an example of dynamically complete markets with bid–ask

spreads in Section 2.8.

2.7 Geometric Representation of Dynamic Completeness

We consider a 3−period security market with no arbitrage opportunity, one security

traded at each period, and no uncertainty about the future. Figure 2 represents the payoff

streams of bid and ask orders placed at periods 0 and 1. It depicts the case in which the

security’s dividends x is equal to (0.5, 1), its ask price at period 1 is equal to 0.5, and its

bid price, pbj(ξ1), is not specified. The ξ1−axis represents the payoff received at period 1,

and the ξ2−axis represents the payoff received at period 2. The vectors represent the payoff

streams of the security. In addition, we represent in the following graph the unfolding of

the dividends and prices of x.

j (0.5, 0.5, pbj(ξ1)) (1, 0, 0)

The blue set represents the positive span of the payoff streams of bid and ask orders

placed at period 0 and ask orders placed at period 1. We remark that markets are dynam-

ically complete if, and only if, the payoff stream of a bid order placed at period 1 is not

included in this set. Additionally, by no-arbitrage, pb cannot be strictly greater than pa.

Since the second coordinate of φb(ξ1) is fixed (it is equal to the dividend of j at period 2), it

implies that markets are dynamically complete if, and only if, φb(ξ1) takes a value on the red

line. Hence, markets are dynamic complete if, and only if, −0.5 < pb(ξ1) 6 pa(ξ1). When

negative values of pa(ξ1) and pb(ξ1) are not economically meaningful we can directly conclude
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that as for frictionless markets, dynamic completeness is equivalent to having the security’s

price at period 1 is different from the dividend received in this event pb(ξ1) 6= −x(ξ1) and

pa(ξ1) 6= x(ξ1). More generally, it follows from Theorem 2.2 that a 3-period market with no

uncertainty and a single security j is dynamically complete if, and only if, for every q ∈ R2

such that q>x is equal to zero, the product of q with the ask orders payoff streams and the

product of q with the bid orders’ payoff stream placed at period 1 have strictly opposite

signs.

Proposition 2.4. 3−period markets with no uncertainty and a single security are dynam-

ically complete if, and only if, for every payoff stream q ∈ R2 such that q>φa(ξ0) = 0,

q>φa(ξ1) and q>φb(ξ1) have strictly opposite sign.

In the following subsection, we present examples of 3−period dynamically complete

markets with bid–ask spreads.

2.8 Examples

The presence of a bid–ask spread does not necessarily result in dynamic incompleteness.

In the following example, we present 3−period frictionless and dynamically incomplete secu-

rity markets that become dynamically complete when a market maker charges a transaction

cost to compensate her services.

Example 2.1. We consider the following 3-period market with uncertainty at period 0

regarding the outcome of future periods.

ξ0

ξd1
ξdd2

ξdu2

ξu1
ξud2

ξuu2

There are two securities available for trading at period 0 and period 1. Their dividends are

equal to (x1, x2) ∈ R6 × R6. We initially assume the securities’ prices present no bid–ask

spread. The following graph presents the unfolding of security 1 dividends and prices.

1

(1, 1)
(0, 0)

(2, 0)

(1, 1)
(0, 0)

(2, 0)
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We present the payoffs of security 2 similarly.

2

(1, 1)
(2, 0)

(0, 0)

(1, 1)
(2, 0)

(0, 0)

The one-period matrix in event ξ0 is equal to(
2 2

2 2

)
.

It is of rank 1 therefore markets are dynamically incomplete.

Now, we assume securities dividends are unchanged, but the services of the market

makers are costly. In each event ξ1 ∈ Ξ1, they charge a transaction cost 0 < caj (ξ1) < pj(ξ1)

on ask orders on j and a transaction cost 0 < cbj(ξ1) < pj(ξ1) on bid orders on j. Hence,

the new ask price of security j is equal to paj (ξ1) = pj(ξ1) + caj (ξ1) and its new bid price in

each event ξ1 is equal to pbj(ξ1) = pj(ξ1) − cbj(ξ1). We present the payoffs of j in a tree in

which a triplet
(
xj(ξ), p

a
j (ξ), p

b
j(ξ)

)
representing the dividend of j, its ask price and its bid

price in event ξ is associated to each non-initial node.

1

(1, 1 + ca1(ξd1), 1− cb1(ξd1))
(0, 0, 0)

(2, 0, 0)

(1, 1 + ca1(ξu1 ), 1− cb1(ξu1 ))
(0, 0, 0)

(2, 0, 0)

We present the payoffs of security 2 similarly.

2

(1, 1 + ca2(ξd1), 1− cb2(ξd1))
(2, 0, 0)

(0, 0, 0)

(1, 1 + ca2(ξu1 ), 1− cb2(ξu1 ))
(2, 0, 0)

(0, 0, 0)

18

Preliminary version – November 11, 2021



The payoff matrix is equal to


x1 x2 −x1 −x2 φa1(ξ1) φa2(ξ1) φb1(ξ1) φb2(ξ1) φa1(ξd1) φa2(ξd1) φb1(ξd1) φb2(ξd1)

ξu1 1 1 −1 −1 −(1+ca1(ξu1 )) −(1+ca2(ξu1 )) 1−cb1(ξu1 ) 1−cb2(ξu1 ) 0 0 0 0
ξd1 1 1 −1 −1 0 0 0 0 −(1+ca1(ξd1 )) −(1+ca2(ξd1 )) 1−cb1(ξd1 ) 1−cb2(ξd1 )
ξuu2 2 0 −2 0 2 0 −2 0 0 0 0 0
ξud2 0 2 0 −2 0 2 0 −2 0 0 0 0
ξdu2 2 0 −2 0 0 0 0 0 2 0 −2 0
ξdd2 0 2 0 −2 0 0 0 0 0 2 0 −2

.
We are going to show that markets are dynamically complete. Assume by contradiction

that there exists a non-zero z ∈ Rk such that zφ 6 0 for all φ ∈ Φ. Denote zi the ith

coordinate of z. We have zxj 6 0 and −zxj 6 0 which imply

z1 + z2 + 2z3 + 2z5 = 0 and z1 + z2 + 2z4 + 2z6 = 0.

Inequalities zφa1(ξu1 ) 6 0 and zφb1(ξu1 ) 6 0 imply

−(1 + ca1(ξu1 ))z1 + 2z3 6 0 and (1− cb1(ξu1 ))z1 − 2z3 6 0.

Therefore, we have z1 > 0 and z3 > 0. Similarly, we obtain from the other inequalities

zi > 0 for i = 2, 4, 5, 6. Hence z = 0, a contradiction. We conclude that there does not exist

a non-zero z such that zφ 6 0 for all φ ∈ Φ. Markets are dynamically complete.

Now, we present an example of 3−period security markets which becomes dynamically

incomplete when the market maker services become costly.

Example 2.2. We assume there are 2 traded securities available for trading. Their div-

idends are equal to (x1, x2) ∈ R6 × R6. We initially assume there is no bid–ask spread,

securities can be purchased and sold at a same price pj(ξ) in every event ξ ∈ Ξ0 ∪ Ξ1 ∪ Ξ2.

We represent the unfolding of the dividends and prices of j in a tree by associating a couple

(xj(ξ), pj(ξ)) to each event ξ ∈ Ξ1 ∪ Ξ2.

1 (
1
2 ,

3
2

)
(0, 0)

(2, 0)

(0, 1)
(0, 0)

(2, 0)

We present the payoffs of security 2 similarly.
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2

(1, 2)
(2, 0)

(0, 0)

(0, 1)
(2, 0)

(0, 0)

The one-period payoff matrix in event ξ0 is equal to(
1 1

2 3

)
.

The one-period payoff matrices in events ξ1 ∈ Ξ1 are equal to(
2 0

0 2

)
.

They are all of rank 2 therefore markets are dynamically complete.

Now, we assume the market makers services are costly in event ξd1 , they charge a trans-

action cost pj(ξ
d
1) > cj(ξ

d
1) > 0 on security j such that

pa1(ξd1) + x1(ξd1) = pa2(ξd1) + x2(ξd1)

where pa1(ξd1) = p1(ξd1) + c1(ξd1) and pa2(ξd1) = p2(ξd1) + c2(ξd1). We have

c1(ξd1)− c2(ξd1) = 1.

We take for example c1(ξd1) = 5
4 and c1(ξd1) = 1

4 . We present the unfolding of the dividends

and prices of x1 in the following tree.

1 (
1
2 ,

11
4 ,

1
4

)
(0, 0, 0)

(2, 0, 0)

(0, 1, 1)
(0, 0, 0)

(2, 0, 0)

We present them similarly for security 2.
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2 (
1, 9

4 ,
7
4

)
(2, 0, 0)

(0, 0, 0)

(0, 1, 1)
(2, 0, 0)

(0, 0, 0)

The payoff matrix is equal to


x1 x2 −x1 −x2 φa1(ξu1 ) φa2(ξu1 ) φb1(ξu1 ) φb2(ξu1 ) φa1(ξd1) φa2(ξd1) φb1(ξd1) φb2(ξd1)

ξu1 0 0 0 0 −1 −1 1 1 0 0 0 0
ξd1

1
2

1 − 1
2
−1 0 0 0 0 − 11

4
− 9

4
1
4

7
4

ξuu2 2 0 −2 0 2 0 −2 0 0 0 0 0
ξud2 0 2 0 −2 0 2 0 −2 0 0 0 0
ξdu2 2 0 −2 0 0 0 0 0 2 0 −2 0
ξdd2 0 2 0 −2 0 0 0 0 0 2 0 −2

.
Let z = (−3, 1,−3

2 ,−
3
2 ,

5
4 , 1). The product of z with any of the columns of the payoff

matrix is negative. Hence, this payoff does not belong to the set of available payoff streams.

It cannot be replicated by a dynamic trading strategy using the securities 1 and 2. The

bid–ask spread makes the markets dynamically incomplete.

3 Multi-period Markets With Bid-Ask Spreads

This section presents the characterization of dynamic completeness in general multi-

period security markets with frictions creating a bid–ask spread. We assume there is no

restriction to short-selling and no limitation to the quantity of security purchased and sold

at the initial period. We also assume agents can infinitely split their orders, and they share

the same information structure. Hence incompleteness does not result from the presence of

one of these frictions.

3.1 Uncertainty And Information

The future is uncertain. We use the same notations as LeRoy and Werner (2014).

Uncertainty is specified by a set of states S. Each of the states represents a description

of the economic environment for all periods t = 0, 1, . . . , T . At period 0 agents do not

know which state will be realized. However, as time passes, they obtain more and more

information about the state. At period T they discover the actual state. Formally, the

information of agents at period t is described by a partition Ft of the set of states S (a

partition Ft of S represents a collection of subsets of S such that each state s belongs to

exactly one element of Ft). The period−0 partition is the trivial partition F0 = {S}. The
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ξ0

ξ1

ξ2 . . .

ξt . . . state S
ξT

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
state s

. . .

. . .

. . .
state 2

state 1

Figure 3: Example of an event tree with T periods and S states of the nature.

period−T partition is the total partition FT = {{s} : s ∈ S}. The partition Ft+1 is finer

than partition Ft; that is, the element of period−(t+ 1) partition to which it belongs. The

(T + 1)-tuple of partitions {F0, F1, . . . , FT } is the information filtration F . The partitions

are assumed to be common across agents; that is, all agents possess the same information.

The number kt denotes the number of elements in the filtration Ft.

For better exposition, we represent the information filtration as an event tree with each

element of partition Ft being a period−t event denoted ξt. An event is a node of the event

tree (see Figure 3). The event ξ0 = F0 represents the root node. We denote ξ++
t the set of

successors of the event ξt. It is equal to the set of events ξτ ⊂ ξt with ξτ ∈ Fτ for τ > t.

The immediate successors of ξt are the events ξt+1 ⊂ ξt with ξt+1 ∈ Ft+1. The number of

immediate successor of event ξt is denoted k(ξt). The predecessor of the event ξt are the

events ξτ ⊃ ξt with ξτ ∈ Fτ for τ < t. The unique immediate predecessor of ξt is the event

ξt−1 ⊂ ξt. It is denoted ξ−t . The set of all events at all future periods t = 1, . . . , T is denoted

Ξ, and k = #(Ξ) represents the number of future events, that is events in Ξ. Therefore

there is a total of k + 1 events including ξ0.
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3.2 Securities, Portfolios And Payoffs

We consider security markets with J securities traded at each period up to period T-

1. Each security is characterized by the dividends it pays at each period, a vector xj of

Rk. The dividend matrix X =
(
x1 . . . xJ

)
represents the dividend streams of the J

securities traded in the markets. The dividend of a security j in an event ξ ∈ Ξ is denoted

xj(ξ). We gather the dividends on every security in an event ξ ∈ Ξ, in a single row vector

x(ξ) = (x1(ξ), . . . , xJ(ξ)).

We consider a market with two types of actors investors and market makers. An investor

represents any party that trades on a financial security market. A market maker is a party

who actively quotes two-sided markets in a particular security, providing bids and asks.

The bid–ask spread compensates the market maker services. Investors purchase and sell

securities to a market maker. They buy at the ask price and sell at the bid price (a market

maker buys at the bid price and sells at the ask price). We adopt their perspective in the

following. The ask price of security j in an event ξ ∈ Ξ is denoted paj (ξ) ∈ RJ and its bid

price is denoted pbj(ξ) ∈ RJ . For notational convenience, we have period−T bid and ask

prices pbj(ξT ) ∈ RJ and paj (ξT ) ∈ RJ even though trading does not take place at period T .

These prices are all set equal to zero. We denote pa(ξ) ∈ RJ the row vector with coordinates

equal to the J securities’ ask price in the event ξ. Similarly, we denote pb(ξ) ∈ RJ the row

vector with coordinates equal to the J securities’ bid price in the event ξ.

At each non-terminal period, investors constitute a portfolio of securities by trading on

the markets. A portfolio of securities in an event ξ ∈ ξ0 ∪ Ξ is represented as a vector

h(ξ) ∈ RJ . The jth coordinate of h(ξ) is denoted hj(ξ), it represents the holding of security

j. If it is positive, then the portfolio holder is entitled to receive the dividends of security

j in the successor events. If it is negative, she is entitled to pay the dividends of j to her

counterpart in the successor events. We denote ht the portfolios held in every event of

period t. The T−uplet (h0, h1, . . . , hT−1) is called a portfolio strategy.

3.3 Dynamic Completeness and the Set of Available Payoff

Streams

The payoff of a portfolio strategy h in event ξt is denoted z(h, pa, pb)(ξt). An investor

first receives the dividends of the portfolio she had constituted in the previous period. Then

she trades on the markets. Hence her payoff is equal to

dividends︷ ︸︸ ︷
x(ξt)h(ξ−t )−

sales revenue︷ ︸︸ ︷
pb(ξt) min

(
h(ξt)− h

(
ξ−t
)
, 0
)
−

purchases cost︷ ︸︸ ︷
pa(ξt) max

(
h(ξt)− h

(
ξ−t
)
, 0
)
. (2)

Therefore the payoff equals the magnitude of the payment at ξt to the investor (or, if

negative, from the investor). We denote zt(h, p
a, pb) the vector of payoffs z(h, pa, pb)(ξt) in
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all period−t events. We say that a portfolio strategy h replicates a payoff stream z ∈ Rk if

z(ξ) = z(h, pa, pb)(ξ) for all ξ ∈ Ξ.

Markets with bid–ask spreads are dynamically complete if it is possible to construct

for every payoff stream a portfolio strategy that replicates it. The set of payoff streams

available via trades on securities is the set M(pa, pb) equal to{
z ∈ Rk | ∃h s. t. z(ξ) = z(h, pa, pb)(ξ) for all ξ ∈ Ξ

}
.

In frictionless security markets, this set is called the asset span since it is equal to the span

of the columns of the market matrix. In markets with bid–ask spreads this set is not a span.

We, therefore, call it the set of available payoff streams. Markets with bid–ask spreads are

dynamically complete if M(pa, pb) = Rk, otherwise they are dynamically incomplete. We

use the notation M(pa, pb) to emphasize the fact that the presence of a bid–ask spread

affects dynamic completeness.

3.4 Trading Strategy

First, we introduce the concept of trading strategies. A trading strategy records the

unfolding of market orders placed in each event. We denote ba(ξ) ∈ RJ+ the ask orders

placed in a non-terminal event ξ and bb(ξ) ∈ RJ+ the bid orders placed in a non-terminal

event ξ. We emphasize that orders exclusively admit non-negative values as opposed to

portfolios that equally admit negative values. An order placed on a security entitles its

issuer to a stream of payoffs in the following periods. Previous to defining the payoff stream

of an order, we introduce the necessary notations. We denote 1ξt ∈ Rk+1 the vector with

coefficient 1 for the coordinate corresponding to the event ξt and 0 in all other events and

we denote 1ξ++
t
∈ Rk+1 the vectors with coefficient 1 in all coordinates corresponding to an

event ξτ ⊂ ξt and 0 in all other events, that is 1ξ++
t
∈ Rk+1 takes the value 1 in all successor

events of event ξt and 0 otherwise. We illustrate this notation in the following example.

Example 3.1. Consider the following 4-period market
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ξ0

ξd1

ξdd2

ξddd3

ξddu3

ξdu2

ξdud3

ξduu3

ξu1

ξud2

ξudd3

ξudu3

ξuu2

ξuud3

ξuuu3

We have 1ξu1
++ =



0 ξ0
0 ξu1
0
1 ξuu2
1 ξud2
0
0
1 ξuuu3
1 ξuud3
1 ξudu3
1 ξudd3
0
0
0
0


and 1

ξd1
++ =



0 ξ0
0 ξu1
0
0
0
1 ξdu2
1 ξdd2
0
0
0
0
1 ξduu3
1 ξdud3
1 ξddu3
1 ξddd3


We define the function

f : Rk+1 × Rk+1 → Rk+1

((x1, x2, . . . , xk), (y1, y2, . . . , yk)) 7→ (x1y1, x2y2, . . . , xkyk)

which associates the product of coordinates to two vectors. We denote xj
(
ξ++
t

)
the div-

idends of a unit of security j purchased (or sold) in an event ξt, 0 < t < T . We have

xj
(
ξ++
t

)
= f

(
xj ,1ξt++

)
.

The payment stream of an ask order placed on security j in an event ξt ∈ Ft, 0 6 t < T ,

is represented by the vector φ̂aj (ξt) with coordinates equal to the ask price in event ξt, the

dividends associated with the holding of the security in successors of event ξt and zero in

all other events, that is,

φ̂aj (ξt) = −paj (ξt)1ξt + xj
(
ξ++
t

)
.

The payment stream of a bid order placed on security j in an event ξt ∈ Ft, 0 6 t < T ,

is represented by the vector φ̂bj(ξt) with coordinates equal to the bid price in event ξt, the

dividends due in successors of event ξt and zero in all other events, that is,

φ̂bj(ξt) = pbj(ξt)1ξt − xj
(
ξ++
t

)
.
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The payment streams of bid and ask orders placed in event ξt on the J securities is a

k + 1× 2J matrix denoted φ̂(ξt) with entries φ̂aj (ξt), and φ̂bj(ξt) for all 1 6 j 6 J that is,

φ̂(ξt) =
(
φ̂a1(ξt) . . . φ̂aJ(ξt) φ̂b1(ξt) . . . φ̂bJ(ξt)

)
.

We denote Φ̂ the set of all the payment streams. We have #Φ̂ = 2J(k+ 1− S). Therefore,

a trading strategy is a vector of R2J(k+1−S)
+ . Its coordinates represent the size of the buy

and bid orders placed on the markets in each trading event. The payment matrix P̂ is a

k + 1× 2J(k + 1− S) matrix with entries φ̂ ∈ Φ̂ such that

P̂ =
(
φ̂(ξ0) φ̂(ξ1(1)) . . . φ̂(ξ1(k1)) . . . φ̂(ξT−1(1)) . . . φ̂(ξT−1(kT−1))

)
.

The first J columns of the payment matrix represent the payment streams of ask orders

placed at period 0. The columns J + 1 to 2J of the payment matrix represent the payment

streams of bid orders placed at the period 0. The successor columns represent the payment

streams of ask orders placed at period 1 6 t 6 T−1 in some event at period t. We presented

examples of payment matrix in Section 2.

The payment positive span B̂(pa, pb) is the set of payment streams that can be generated

by a trading strategy, that is

B̂(pa, pb) =
{
ẑ ∈ Rk | ẑ = P̂b for some b ∈ R2J(k+1−S)

+

}
.

Since trading strategies exclusively accept non-negative coordinates, the payment positive

span is the positive span in the mathematical sense (see Section 2 for a definition) of the

set of payment streams.

The payment matrix is different from the payoff matrix which represents the payments

across all future events of a one-unit trade order placed on a security at a non-terminal event.

It is the concatenation of the payoff matrix with the period 0 payments of every order. We

denote φ(ξt) the sub-matrix formed by selecting every rows of the matrix φ̂(ξt) except the

first. It represents the payoff streams of bid and ask orders placed in the non-terminal event

ξt. We denote P the payoff matrix. It is a k × 2J(k + 1− S) equal to(
φ(ξ0) φ(ξ1(1)) . . . φ(ξ1(k1)) . . . φ(ξT−1(1)) . . . φ(ξT−1(kT−1))

)
.

We denote Φ the set of columns of the payoff matrix P.

The payoff positive span B(pa, pb) is the set of payoff streams that can be realized by a

trading strategy, that is

B(pa, pb) =
{
z ∈ Rk | z = Pb for some b ∈ R2J(k+1−S)

+

}
.
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Since trading strategies only take positive values, the payoff positive span is equal to the

positive span (see Section 2 for a definition) of the set of columns of the payoff matrix that

is,

B(pa, pb) = p-span(Φ).

A trading strategy generates a payoff stream if, and only if, a portfolio replicates it as

well. Put differently, the set of available payoff streams is equal to the payoff positive span.

Proposition 3.1. The set of available payoff streams is equal to the payoff positive span.

Proof. Fix a vector z ∈M(pa, pb). We are going to show that z ∈ B(pa, pb). By assumption,

there exists a portfolio strategy h such that zt = zt(h, p
a, pb) for all 1 6 t 6 T . Recall from

Equation 2 that

z(h, pa, pb)(ξt) = d
(
h
(
ξ−t
))
− pb(ξt) min

(
h(ξt)− h

(
ξ−t
)
, 0
)
− pa(ξt) max

(
h(ξt)− h

(
ξ−t
)
, 0
)
.

that is, period t payoff in event ξt is equal to the dividend received from holding the portfolio

h(ξbt ) at the beginning of period t plus the gain earned from trading taking place at period

t. Let b ∈ R2J(k+1−S) be a trading strategy such that
ba(ξ0) = max(h(ξ0), 0)

bb(ξ0) = −min(h(ξ0), 0)

ba(ξt) = max
(
h(ξt)− h

(
ξ−t
)
, 0
)

for all 0 < t < T

bb(ξt) = −min
(
h(ξt)− h

(
ξ−t
)
, 0
)

for all 0 < t < T

.

We denote E(ξt) the set of predecessor of ξt (see Section 3.1). We have

h(ξt) =
∑

ξτ∈E(ξt)

(
ba(ξτ )− bb(ξτ )

)

for every 0 6 t 6 T − 1. Hence,

z(h, pa, pb)(ξt) = x(ξt)
∑

ξτ∈E(ξt)

(
ba(ξτ )− bb(ξτ )

)
− pa(ξt)ba(ξt) + pb(ξt)b

b(ξt)

for all ξt ∈ Ft and all 0 < t < T and

z(h, pa, pb)(ξT ) = x(ξT )
∑

ξτ∈E(ξt)

(
ba(ξτ )− bb(ξτ )

)

for all ξT ∈ FT where ba(ξt) represents the quantities of securities purchased in event ξt,

bb(ξt) represents the quantities of securities sold in event ξt and
∑

ξτ∈E(ξt)

(
ba(ξτ )− bb(ξτ )

)
are the cumulative quantities of securities traded up to time t. Note that bT is not defined
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since there is no trading taking place at time T . Hence, we have

φ(ξ0)

(
ba(ξ0)

bb(ξ0)

)
+
T−1∑
t=1

∑
ξt∈Ft

φ(ξt)

(
ba(ξt)

bb(ξt)

)
= z

which is equal to Pb = z. Therefore, z ∈ B(pa, pb).

Now fix a vector z ∈ B(pa, pb). We are going to show that z belongs to M(pa, pb). By

assumption, there exists b ∈ R2J(k+1−S)
+ such that z = Pb. It is equivalent to the existence

of row vectors ba(ξt) ∈ RJ and bb(ξt) ∈ RJ for all ξt ∈ Ft and all 0 6 t 6 T − 1 such that

φ(ξ0)

(
ba(ξ0)

bb(ξ0)

)
+
T−1∑
t=1

∑
ξt∈Ft

φ(ξt)

(
ba(ξt)

bb(ξt)

)
= z.

It implies the following equality

x(ξt)
∑

ξτ∈E(ξt)

(
ba(ξτ )− bb(ξτ )

)
− pa(ξt)ba(ξt) + pb(ξt)b

b(ξt) = z(ξt)

for all non-terminal event ξt. We let h be a portfolio strategy such that
h(ξ−t ) =

∑
ξτ∈E(ξt)

(
ba(ξτ )− bb(ξτ )

)
max

(
h(ξt)− h(ξ−t ), 0

)
= ba(ξt)

min
(
h(ξt)− h(ξ−t ), 0

)
= −bb(ξt).

We obtain

z(ξt) = d
(
h
(
ξ−t
))
− pb(ξt) min

(
h(ξt)− h

(
ξ−t
)
, 0
)
− pa(ξt) max

(
h(ξt)− h

(
ξ−t
)
, 0
)

for all non-terminal event ξt and

z(ξT ) = x(ξT )h(ξbT )

for all terminal event ξT . Therefore z ∈M(pa, pb).

Proposition 3.1 implies that the set of available payoff streams is equal to the payoff

positive span. Therefore, a market is dynamically complete when B(pa, pb) = Rk and trading

strategies can be used to characterize dynamic completeness.

3.5 No-arbitrage

Dynamic completeness is characterized in the frictionless case under a mild equilibrium

property, the absence of arbitrage opportunity. To extend this characterization to markets

with frictions, we define an arbitrage opportunity for a trading strategy instead of a portfolio
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strategy. We denote Rn++ the set of vectors with strictly positive coordinates and we denote

C? = R+×Rk+\0 the set of positive payment streams. There exists an arbitrage opportunity

in the markets if there exists a trading strategy b ∈ R2J(k+1−S)
+ generating a non-negative

payment stream with at least one strictly positive payment, that is such that P̂b > 0.

Additionally, a vector µ ∈ Rk+1 is said to support the markets when for every ẑ ∈ B̂(pa, pb),

we have ẑ>µ 6 0. We show in Theorem 3.1 that there is no arbitrage opportunity in the

markets if, and only if, a vector of strictly positive event prices supports the markets.

Theorem 3.1. There is no arbitrage opportunity in a frictionless market if, and only if, a

vector of strictly positive event prices supports the market.

Proof. First we assume there is no arbitrage opportunity, we are going to show that there

exists a vector of strictly positive event prices such that for every z ∈ B̂(pa, pb), we have

z>µ 6 0. No-arbitrage implies there exists no trading strategy b ∈ R2J(k+1−S)
+ such that

P̂b ∈ C?. Therefore, we have B̂(pa, pb) ∩ C? = ∅. In particular, let ∆ = {µ ∈ Rk+1
+ |∑k

i=0 µi = 1}, we have B̂(pa, pb) ∩ ∆ = ∅. The set B̂(pa, pb) is the positive span of the

columns of the payoff matrix. Hence, it is a closed convex set. Additionally, ∆ is compact.

Therefore the theorem of strict separation of convex applies and there exists µ ∈ Rk+1 such

that

sup
z∈B̂(pa,pb)

z>µ < inf
z∈∆

z>µ.

Suppose that µξ 6 0 for some event ξ ∈ Ξ ∪ ξ0. Consider µ′ ∈ ∆ such that µ′ξ = 1 and

µ′ξ′ = 0 for every ξ′ 6= ξ. Then, µ′>µ 6 0 so that

sup
z∈B̂(pa,pb)

z>µ < 0,

contradicting z>µ = 0 for z = 0. It remains to show that z>µ 6 0 for every z ∈ B̂(pa, pb).

Suppose there exists z′ ∈ B̂(pa, pb) such that z>µ′ > 0. Since B̂(pa, pb) is a positive span,

there exists α ∈ R+ such that αz′ ∈ B̂(pa, pb) and (αz′)>µ > minz∈∆ z
>µ, a contradiction.

Now, assume there exists µ ∈ Rk+1
++ such that for every z ∈ B̂(pa, pb), we have z>µ 6 0.

We are going to show that there is no-arbitrage opportunity. Assume by contradiction there

exists a trading strategy b ∈ R2J(k+1−S)
+ such that P̂b ∈ C?. Denote z̃ the payoff stream of

this trading strategy. By assumption, we have z′>µ 6 0 with µ ∈ Rk+1
++ implying z′ = 0.

Therefore there is no arbitrage opportunity.

When there are frictions, supporting strictly positive event prices represents the exis-

tence of underlying no-arbitrage frictionless markets supporting the markets. The absence

of arbitrage opportunity implies that strictly positive event prices support securities prices,

in the sense that prices are greater than the weighted sum of expected payoffs for event
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prices µ, that is, we have

µξtp
a
j (ξt) >

∑
ξ∈ξ++

t

µξxj(ξ) > µξtp
b
j(ξt)

for every non-terminal event ξt and every security j ∈ J . Therefore trading strategies permit

a straightforward generalization of the fundamental theorem of asset pricing to markets with

bid–ask spreads. When markets are frictionless, the payoff stream of an ask order is the

opposite of the payoff stream of the bid order on this same security in the same event.

Hence, the vector of event prices supports the market with an equality sign, and Theorem

3.1 coincides with the fundamental theorem of asset pricing (Harrison and Kreps (1979),

Magill and Quinzii (1996)) expressed for trading strategies instead of portfolio strategies.

3.6 Characterization of Dynamic Completeness

Proposition 3.1 highlights the link between dynamic completeness and the positive span

of payoff streams. Moreover, it allows us to use mathematical knowledge on positive spans

to characterize dynamic completeness. To begin with, we show that a number of
⌈

k+1
2(k+1−S)

⌉
traded securities is necessary for markets to be dynamically complete.

Proposition 3.2. Markets with bid–ask spreads are dynamically complete only if at least⌈
k+1

2(k+1−S)

⌉
securities are traded.

Proof. By definition, markets are dynamically completeness if M(pa, pb) = Rk. Then,

p-span(φ) = Rk. Hence as a consequence of Corrolary 2.4 of Regis (2015) which states

that any positive spanning set of Rk contains a basis of Rk, the book order’s payoffs matrix

must have at least k + 1 columns. It implies that at least J > k+1
2(k+1−S) securities must

be traded. Since J takes only integer values, markets are dynamically complete only if

J >
⌈

k+1
2(k+1−S)

⌉
.

Example 3.2. Consider a market with k future events and only one security x ∈ Rk

available for trading. According to Proposition 3.2 markets with k events are dynamically

complete only of at least k+1
2(k+1−S) securities are traded. Hence, markets are dynamically

complete only if the total number of events exceeds twice the number of states, that is

k + 1 > 2S.

The bound on the necessary number of traded security does not imply that a greater

number of traded securities is necessary to satisfy dynamic completeness (see Section 2 for

an example) in the presence of bid–ask spreads. However, the informativeness of this first

result must be nuanced. Indeed, this bound is not informative whenever S 6 k+1
2 as it

merely implies that at least one security must be traded. In any case, providing that this

number of security is traded on the market is insufficient to ensure dynamic completeness.
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It also depends on the values of the securities prices and dividends. In frictionless markets,

dynamic completeness is equivalent to having a unique normalized strictly positive vector

of supporting event prices under no-arbitrage. We show in the following theorem that the

uniqueness of this vector is equivalent to having exclusively non-zero period−0 event prices

supporting the market. A vector of event prices µ =

(
µξ0

µ̃

)
∈ R7 with µξ0 ∈ R and µ̃ ∈ R6

is said to have a non-zero period−0 price if µξ0 6= 0.

Proposition 3.3. When markets are frictionless and admit no arbitrage opportunity, a

unique normalized vector of strictly positive event prices supports the market if, and only

if, every non-zero supporting event prices have a non-zero period−0 price.

Proof. First, we assume that there exists a unique normalized ν ∈ Rk+1
++ such that ν>z = 0

for every z ∈ B̂(pa, pb). We are going to show that every supporting event prices have a

non-zero period−0 price. Assume by contradiction that there exist µ =

(
0

µ̃

)
∈ R7 \ {0}

with µ̃ ∈ Rk such that z>µ = 0 for every z ∈ B̂(pa, pb). Let ε > 0 be such that ν+εµ ∈ Rk+1
++ ,

then (ν + εµ)>z = 0 for every z ∈ B(pa, pb) contradicting the uniqueness of ν.

Now, we assume that every µ =

(
µξ0

µ̃

)
∈ Rk+1 \{0} with µξ0 ∈ R and µ̃ ∈ Rk satisfying

z>µ = 0 for every z ∈ B̂(pa, pb) are such that µξ0 6= 0. We are going to show that there exists

a unique normalized ν ∈ Rk+1
++ such that ν>z = 0 for every z ∈ B̂(pa, pb). Let ν =

(
νξ0

ν̃

)

with νξ0 ∈ R∗+ and ν̃ ∈ Rk++. Suppose by contradiction that there exists ν ′ =

(
ν ′ξ0
ν̃ ′

)
with

ν ′ξ0 ∈ R∗+ and νξ0
′ ∈ Rk++ such that ν ′ 6= λν for every λ ∈ R+ and ν ′>z = 0 for every

z ∈ B(pa, pb). Let α ∈ R be such that νξ0 = αν ′ξ0 and (ν − αν ′)>z = 0 implying ν = αν ′, a

contradiction.

We demonstrate in Theorem 3.2 that every supporting event prices vector must have a

non-zero period-0 price.

Theorem 3.2. The following propositions are equivalent:

i. Markets are dynamically complete;

ii. for every non-zero payoff stream q ∈ Rk, there exists an order payoff stream φ ∈ Φ

whose product with q is positive;

iii. every event price vector supporting the markets has a non-zero period−0 price.
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Proof. The proof of i. equivalent to ii. follows from the characterization of positive spanning

sets of Davis (1954). For the sake of clarity, we present it in our context. Assume that

markets are dynamically complete. We are going to show that for every non-zero payoff

stream q ∈ Rk, there exists an order payoff stream φ ∈ Φ such that qφ > 0. Assume by

contradiction that there exists a payoff stream q ∈ Rk such that qφ 6 0 for every φ ∈ Φ.

Let b ∈ R2J(k+1−S)
+ be a trading strategy such that z = Pb, that is

z =

2J(k+1−S)∑
i=1

biφi.

Moreover, z>z > 0 that is,
2J(k+1−S)∑

i=1

biφ
>
i z > 0

implies that at least one element of the sum is positive. Hence there exists an order payoff

stream φi such that biφ
>
i z > 0, a contradiction. Therefore, for every non-zero payoff stream

q ∈ Rk, there exists an order payoff stream φ ∈ Φ such that qφ > 0.

Now assume that for every payoff stream q ∈ Rk there exists an order payoff stream φ ∈
Φ such that qφ > 0. We are going to show that markets are dynamically complete. Assume

by contradiction that markets are dynamically incomplete. It implies that z /∈ p-span(Φ),

that is p-span(Φ) ∩ z = ∅. Therefore according to Rockafellar (1970) Theorem 11.3, there

exists a hyperplane with vector normal at the origin q′ that properly separates p-span(φ)

from the rest of Rk, that is such that for either q = q′ or q = −q′, q>φ 6 0 for all φ ∈ Φ, a

contradiction.

Now, we are going to show that ii. is equivalent to iii.. First, assume that for every

payoff stream q ∈ Rk, there exists an order payoff stream φ ∈ Φ such that q>φ > 0. We

are going to show that every event prices µ =

(
µξ0

µ̃

)
∈ Rk+1 with µξ0 ∈ R and µ̃ ∈ Rk

satisfying z>µ 6 0 for every z ∈ B̂(pa, pb), are such that µξ0 6= 0. Let νξ0 ∈ R, ν̃ ∈ Rk and

let ν =

(
νξ0

ν̃

)
be such that z>ν 6 0 for every z ∈ B̂(pa, pb). By assumption, there exists

φ ∈ Φ such that φ>ν̃ > 0. It implies νξ0 6= 0.

Then, we assume that every event prices µ =

(
µξ0

µ̃

)
∈ Rk+1 with µξ0 ∈ R and µ̃ ∈ Rk

satisfying z>µ 6 0 for every z ∈ B̂(pa, pb), are such that µξ0 6= 0. We are going to show

that for every payoff stream q ∈ Rk, there exists an order payoff stream φ ∈ Φ such that

q>φ > 0. Assume by contradiction that there exists ν̃ ∈ Rk, such that φ>ν̃ 6 0 for every

φ ∈ Φ. Therefore, we have ν =

(
0

ν̃

)
∈ Rk+1 such that z>ν 6 0 for every z ∈ B̂(pa, pb), a

contradiction.
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In particular, Theorem 3.2 implies that it is necessary and sufficient to find a payoff

stream with a non-positive product with every order payoff stream positive to demonstrate

that markets are dynamically incomplete.

4 Conclusion

Market makers are essential actors of financial markets. To compensate for the risk

they bear by holding securities for several periods, they charge positive transaction costs

on trades creating frictions called bid–ask spreads. Bid–ask spreads represent the principal

transaction costs borne by investors when trading on financial markets. We show that

markets may be dynamically complete even in the presence of bid–ask spreads. Moreover,

in some cases, removing bid–ask spreads will result in dynamically incomplete markets (see

Example 2.1). Finally, we demonstrate that dynamic completeness is equivalent to the

absence of frictionless supporting markets with a zero period−0 price.

Applications of our results concern the regulation of securities pricing in security ex-

changes, particularly the size of acceptable bid–ask spreads. Competition between market

makers prevents bid–ask spreads from being excessively large; nonetheless, the question

remains whether a complementary regulation is necessary to achieve specific goals such as

completeness (see Duffie and Rahi (1995)). Another potential application of these results

concerns replacing post-trade intermediaries on security exchanges with distributed ledgers

technologies (DLTs). These technologies provide the possibility of disposing of intermedi-

aries in trades and are expected to reduce transaction costs. Glosten (1994) shows that

DLTs provide as much liquidity as can be expected in extreme adverse selection environ-

ments. Nonetheless, he nuances the expectation that DLTs necessarily cut transaction costs

by demonstrating that the spread in small trades in electronic limit-order is positive. In

contrast, it is possible to imagine a competitive pricing model with zero small-trade spread

(see Glosten (1989)). DLTs’ proponents must demonstrate that they outclass the current

market organization to gain financial regulators’ support. One of the various questions they

should answer is: regarding risk-sharing, will securities exchanges benefit from switching to

DLTs?

Equally, recent literature on asset pricing in markets with frictions provides closed-form

expression to pricing rules. However, a trade-off for the increased precision is that some

authors assume markets are complete. It is the case in particular, in Cerreia-Vioglio, Mac-

cheroni and Marinacci (2015) and Araujo, Chateauneuf and Faro (2012) which are two of

the most significant models of the field. Indeed, Araujo, Chateauneuf and Faro (2012) as-

sume the pricing rule is the super-replication price of some underlying incomplete security

market. It amounts to assume completeness in the traditional sense that it is possible to
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trade every payoff stream. It is difficult to improve these models by extending them to

multiperiod settings as preliminary theoretical questions must be addressed. For exam-

ple, Araujo, Chateauneuf, Faro and Holanda (2019) determine which properties of Araujo,

Chateauneuf and Faro (2012) and Cerreia-Vioglio, Maccheroni and Marinacci (2015) are

stable in 3−period security markets. Naturally, another question relates to the assumption

that markets are complete. In 2−period security markets, completeness depends exclu-

sively on the rank of the dividend matrix. It is unaffected by the presence of friction. In

multiperiod security markets, prices impact the available payoff streams through trading

happening at intermediary periods. Therefore non-linearities modify the characterization of

dynamic completeness. Hence, any attempt to extend these results to multiperiod settings

necessitates characterizing dynamic completeness and determining how compelling it is in

the presence of friction. Araujo, Chateauneuf, Faro and Holanda (2019) do not address this

question. They adopt a non-standard definition of completeness: the payoffs received at

the intermediary period are not part of it. It is as if agents initially ignore that markets

re-open at the intermediary period.

A significant improvement to our contribution is to characterize dynamic completeness

when it is explicit that the traded quantity impacts the unitary price. Indeed, in security

markets, market makers provide ask and bid offers for specific quantities. Therefore, prices

are not linear in quantity purchased or sold. For example, in Kyle (1985), Glosten (1994)

and Biais, Martimort and Rochet (2000), prices are convex and increasing in the traded

quantity. This will be the subject of future research.
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