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Abstract

Root dominance is an intermediate dominance relation between weak and

strict dominances. In addition to weak dominance, root dominance requires

strict dominance on all profiles where an opponent plays a best response to

the dominating strategy. The iterated elimination of root dominated strategies

(IERDS) outcome refines the iterated elimination of strictly dominated strategies

(IESDS) outcome, and IERDS is an order independent procedure in finite games,

contrary to the iterated elimination of weakly dominated strategies (IEWDS). In

addition, IERDS does not face the inconsistency that we call mutability. That is,

IERDS does not alter the dominance relation between two strategies like IEWDS

does. Finally, we introduce a rationality concept which corresponds to root

undominated strategies. This rationality concept is induced by perturbations of

the game such that a player believes the strategies he is considering might be

observable by his opponent. We discuss the links between our concept and other

concepts established in various literatures such as the conjectural variations

theory.
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1 Introduction

1.1 Motivating example

Assume two agents who have coordination incentives but also have strong egocentric

biases. That is, each agent is indifferent between, on the one hand, coordinating on his

least preferred action with the other agent and, on the other hand, miscoordinating

but choosing his preferred action. This situation can be represented in the following

game which can be seen as a modified version of the battle of the sexes (BoS) where

best responses payoffs are underlined1:

j’s Strategy

i’s Strategy Aj Bj Oj

Ai (3,2) (2,2) (1,0)

Bi (1,1) (2,3) (0,0)

Oi (0,0) (0,1) (1,1)

Figure 1: Modified Version of the Battle of the Sexes

Remark first that no strategy is strictly dominated. Thus, the iterated elimination

of strictly dominated strategies (IESDS) does not eliminate any strategy. In contrast,

both outside options Oi and Oj are weakly dominated (respectively by Ai and Bj).

As well, Bi and Aj are weakly dominated2. However, as noted by Samuelson (1992):

It is well known that the order in which dominated strategies are eliminated

can affect the outcome of the [iterated elimination of weakly dominated

strategies (IEWDS)].

In other words, IEWDS is order dependent (see also Marx and Swinkels (1997);

Hillas and Samet (2020)). Here, it is the case since IEWDS always eliminates outside

options Oi and Oj but only sometimes Aj and/or Bi. It is striking that no iterated

elimination procedure based on a dominance relation3 can both provide a unique out-

come when applied to this game and still eliminate some strategies. Particularly, it

1Remark that utility functions can be denoted: Ui(Ai) = 2 + 1Aj
−1Oj

, Ui(Bi) = 1 +

1Bj
−1Oj

, Ui(Oi) = 0+1Oj
; and in a symmetric way for player j: Uj(Bj) = 2+1Bi

−1Oi
, Uj(Aj) =

1 + 1Ai
−1Oi

, Uj(Oj) = 0 + 1Oi
.

2In addition to the ouside options, this is the main difference with the standard BoS.
3See Definition 1 for the precise definition.
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is remarkable that even the Nash equilibrium (Oi, Oj) cannot be ruled out while we

could intuitively think that players “should” try to coordinate on better outcomes.

In this paper, we introduce a new dominance relation named root dominance and an

associated order independent iterated elimination procedure the iterated elimination

of root dominated strategies (IERDS) such that IERDS eliminates both Oi and Oj

and stops there. Root dominance requires weak dominance and strict dominance on

all the profiles where the opponent best responds to the dominating strategy. In our

version of the Battle of the Sexes, j best responds to Ai by playing Aj or Bj. At these

two profiles, Ai strictly payoff dominates Oi. Therefore, Ai root dominates Oi. On

the contrary, playing Ai does not yield a strictly higher payoff than playing Bi when j

plays Bj . Thus, Ai does not root dominate Bi and Bi is never eliminated by IERDS.

1.2 Elimination procedures based on dominance relations

Iterated elimination of strictly dominated strategies (IESDS) is one of the most basic

tools of game theory. It is among the least vulnerable solution concepts when analysts

eliminate strategies to predict the outcome of a situation. Notably, it is equivalent

to the concept of rationalizability in two-player games (see Bernheim (1984); Pearce

(1984)) and when a game is dominance solvable4, it reinforces the use of the Nash

equilibrium as a solution concept, like in the Cournot duopoly. Remarkably, for in-

stance, IESDS is essential to understand why there is a unique equilibrium in global

games (see Carlsson and van Damme (1993)). However, the conceptual robustness of

IESDS necessarily reduces its use when precise predictions are required. Instead, iter-

ated elimination of weakly dominated strategies (IEWDS) outcome is a refinement of

IESDS outcome. IEWDS has been largely applied in different strands of the economic

literature such that the voting literature (see Moulin (1979)). Additionally, a certain

order of IEWDS is equivalent to the backward induction solution5 (see Moulin (1986,

p.84)). Though, IEWDS may go sometimes “too far” in the selection. As an example,

it may eliminate the only Nash equilibrium in certain games such that the Bertrand

duopoly. Furthermore, inconsistencies of IEWDS refrain its use as a solution concept.

In particular, order dependence6 of IEWDS (and therefore the multiplicity of final out-

comes) prevents firm forecasts. However, attempts to justify the use of IEWDS have

been made. Among this literature, Marx and Swinkels (1997) shows that IEWDS is

4Dominance solvability means that IESDS outcome is a unique profile.
5It is true in games where, if a player is indifferent between two terminal nodes, it implies that

all players are indifferent at these same terminal nodes. Moulin (1986)) calls this assumption the

one-to-one assumption.
6It means that different applications of the procedure may lead to different final outcomes. See

Section 2 for definitions. The problem of order independence of procedures has given a rich literature

(see for instance Gilboa et al. (1990); Apt (2005, 2011); Luo et al. (2020); Hillas and Samet (2020)).
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payoffs order independent in games with transference of decisionmaker indifference

(TDI)7, and define in association, the nice weak domination8. Nevertheless, the order

independence result is limited to payoffs (and does not apply to strategies)9, while

in the context of decision theory, Kahneman and Tversky (1979) show that payoffs

may not determine entirely the preferences. Then, from both theoretical and practical

points of view, payoffs independence might not be considered as strong a result as

strategies order independence. Alternatively, we propose in this paper a dominance

relation and an associated procedure whose outcome refines the IESDS outcome and

is (payoff and strategies) order independent in every finite game.

1.3 Outline

We introduce in this paper a new kind of iterated elimination procedure based on a new

dominance relation called root dominance. Root dominance is a stronger relation than

weak dominance and weaker than strict dominance. That is, root dominance requires

weak dominance and the strict payoff dominance on a specific profile set: the best reply

set to the dominating strategy. Note that this last property depends essentially on the

dominating strategy, which is, to the best of our knowledge, a novelty. We introduce

also a new iterated elimination procedure, whose order independence property is not

limited to payoffs, but concerns strategies as well.

In the next section, we establish a simplified framework with only pure strategies.

In Section 3, we define the notion of root dominance and our iterated elimination

procedure IERDS. Additionally, we illustrate them with some examples. In Section 4,

we show the technical lemmas and the order independence result. We make a suc-

cinct literature review about iterated elimination procedures in Section 5. Then, in

Section 6, we present the mutability issue, notably faced by IEWDS, and show that

IERDS is immutable. In Section 7, we extend our concepts to a framework with mixed

strategies and show that our results hold true. We introduce our rationality concepts

in Section 8 and we compare them specifically to the concepts in conjectural variation

theory concepts. Finally, we conclude in Section 9.

7A game exhibits TDI when, if one agent is indifferent between two strategies at a given opponents’

profile, every player is indifferent between the two profiles formed by either one or the other strategy

of the first player, and the given opponents’ profile.
8A strategy s′i of player i is said nicely weakly dominated by strategy s′′i if, in addition to weak

dominance, everywhere where i is indifferent between s′i and s′′i , i’s opponents are also indifferent

between i playing s′i and s′′i .
9See Appendix D to distinguish our notion of order independence and the Marx and Swinkels

(1997)’s one.
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2 Framework with pure strategies

We denote Γ = {I, S, U} a finite game with I the set of players, S = Π
i∈I

Si, Si being the

finite strategy set of player i ∈ I (we consider only pure strategies), and U the vector

of utility functions of each player i where Ui : S → R. We denote S−i = Π
j∈I\{i}

Sj the

strategy profiles set of i’s opponents. Finally, we denote s ∈ S a strategy profile, and

s−i ∈ S−i the strategy profile of the opponents of i ∈ I such that when i plays si,

s = (si, s−i).

Here, we define the main notion that motivates this paper, namely order indepen-

dence. Before, we define a process associated with any dominance relation: A process

iteratively eliminates some dominated strategies at the step they are eliminated with

a specific order, and ends when there is no dominated strategy anymore. Then, a

procedure associated with a game is the class of all processes applied to the game.

Now, we can state what we mean by order independence when we study a precise

game:

Definition 1. A procedure associated with a dominance relation and a game is said

order independent for this game if all processes have the same final (strategies) out-

come.

Importantly, the final outcome of a process contains the payoffs and the strategies.

Again, this feature distinguishes ourselves from Marx and Swinkels (1997) who look

only at payoffs to define order independence10. Finally, we define order independence

for the class of games we study, namely the finite games:

Definition 2. A procedure associated with a dominance relation is said order inde-

pendent if it is order independent for every finite game.

In the next section, we define formally the sequence of games11 associated with a

process, which further specifies the kind of order independence we consider. Impor-

tantly, except explicit mention, we consider that a procedure is order independent if

and only if any number (but zero) of strategies can be eliminated at each step of the

processes run by the procedure and all processes have the same final outcome.

10Obviously, both notions often coincide, but it is not always the case.
11See Definition 5 below for the formal definition.
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3 Root dominance

In this section, we define our dominance relation as well as our iterated elimination

procedure.

3.1 The dominance relation

To establish the dominance relations in this section, we first redefine a standard notion

of game theory, the Best Reply Set to a strategy :

Definition 3. The Best Reply Set to s′′i ∈ Si, denoted b(s′′i ), is the set of all strategy

profiles s∗ ∈ S such that:

s∗i = s′′i , and, if S−i 6= ∅:

∃j ∈ I \ {i}, s∗j ∈ argmax
sj∈Sj

Uj(sj, s
∗
−j) (OM)

The Best Reply Set is simply the set of all profiles which contain s′′i and where at

least one i’s opponent best responds to the profile (OM′). If there is no opponent or

their strategy sets are empty, the Best Reply Set is simply the strategy s′′i .

Now, we define our dominance relation, namely root dominance:

Definition 4. A strategy s′i ∈ Si is said root dominated by the strategy s′′i ∈ Si,

(denoted s′′i ≻ s′i), if:

∀s−i ∈ S−i : Ui(s
′′
i , s−i) ≥ Ui(s

′
i, s−i) (RD1)

∀s∗−i such that s∗ ∈ b(s′′i ) : Ui(s
′′
i , s

∗
−i) > Ui(s

′
i, s

∗
−i) (RD2)

RD1 and RD2 are inadmissibility conditions, i.e., they ensure that root dominated

strategies are weakly dominated. Precisely, RD1 states that s′i is very weakly dom-

inated by s′′i . There is very weak dominance if a strategy always pays off at least

as much as another strategy (see Marx and Swinkels (1997) for a formal definition).

Therefore, either the former strategy (weakly) dominates the latter, or they are equiv-

alent. RD2 states that s′′i is strictly preferred to s′i if the opponents play a profile in

b(s′′i ). Additionally, we will denote respectively the strict and the weak dominance

relation:

s′′i ≻
S
s′i and s′′i ≻

W
s′i
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3.2 Finite sequence of games

Since we are interested in defining iterated elimination procedures and comparing them

to IEWDS and IESDS, we formally define the sequence of games that will be used in

this section, in association with the dominance relation we have defined above:

Definition 5. A sequence of games associated with a game Γ is:

{Γλ}λ≤Λ ≡ {Γ0 ≡ Γ, . . . ,Γλ, . . . ,ΓΛ}

with λ ∈ [[0,Λ]] such that:

• ∀λ ∈ [[0,Λ]], Γλ = {I, Sλ, U}, with Sλ = Π
i∈I

Sλ
i , S

λ
i being the strategy set of player

i ∈ I, I the unchanged set of players of Γ, and U the vector of utility functions

of each player i (whose domain is restricted), Ui : S
λ → R,

• ∀λ ∈ [[1,Λ]], Γλ is a restriction of Γλ−1, i.e., Sλ = Π
i∈I

Sλ−1
i \ Sλ−1

i where for each

player i, Sλ−1
i is an arbitrary (possibly empty) set of strategies in Sλ−1

i dominated

in Γλ−1, but such that for at least one player i ∈ I, Sλ−1
i is non empty.

• Sλ = Π
i∈I

∅ if and only if λ = Λ.

The sequence of games starts from the original game Γ, and then restricts the

strategy set by eliminating some (i.e. at least one but not necessarily all) dominated

strategies at each step of the sequence. The sequence ends if and only if no more

strategy is dominated. Then, we can define the iterated elimination of root dominated

strategies (IERDS) as the procedure that iteratively eliminates some root dominated

strategies at the step they are eliminated and ends when there is no root dominated

strategy anymore. As explained above, the procedure can lead to several processes,

each one associated to a sequence of games.

Let us study how root dominance and IERDS work in finite games through the

next example:

j’s Strategy

i’s Strategy L R

T (4,2) (1,1)

B (2,2) (4,2)

O (2,2) (2,2)

−→
IERDS

j’s S.

i’s S. L

T (4,2)

Figure 2: Game with a Unique Prediction
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O is not root dominated by B nor by T . Even if O is (very) weakly dominated by

B (RD1 is thus respected), we see that both (B,L) and (B,R) are in b(B), and since

Ui(B,L) = Ui(Z, L), there is no root dominance since it requires strict dominance

on all profiles in b(B) (RD2). T does not either, because of RD1. Indeed, there is

no (very) weak dominance since Ui(T,R) < Ui(Z,R). However RD2 is checked since

b(T ) = (T, L) and Ui(T, L) > Ui(Z, L). Concerning player j, L root dominates R.

Actually, L (very) weakly dominates R and Uj(T, L) > Uj(T,R) while b(L) = (T, L).

After eliminating R, we see that both B and O are root dominated since T strictly

dominates them. Finally, IERDS selects (T, L) like IEWDS.

Before focusing ourselves on the results, we make a semantical precision: we say

that s′i is eliminated by s′′i at step λ of a sequence of games if:

s′′i ≻ s′i, and s′′i ∈ Sλ+1
i , and s′i ∈ Sλ

i \ Sλ+1
i .

Obviously, s′i is eliminated by s′′i only if it is root dominated by s′′i , but the converse

is not necessarily true in a given process. The reason is that both s′i and s′′i , or only

s′′i or neither of them might be eliminated at a given step. However, for the case of

root dominance and IERDS, the distinction between domination and elimination is

only made to ease the establishment of the next results. That is, a root dominated

strategy always has an undominated dominator in finite games, and then, for each

root dominated strategy, one can find a strategy that eliminates it. We formally prove

this statement below in Lemma 2.

4 Order independence result

4.1 Technical results

Lemma 1. ∀i ∈ I, ∀si ∈ Si, b(si) 6= ∅

Proof. By Definition 3, it is straightforward that b(si) is never empty for any finite

game. Indeed, either there is no opponent (or equivalently opponents’ strategy sets

are empty) and then b(si) = si. Otherwise, since the game is finite, each player has

(at least) a best response to each strategy profiles of his opponents. �

Now, we state that root dominance forms a strict partial order:

Proposition 1. With respect to a fixed game, root dominance induces a strict par-

tial order on the strategy set of any player i ∈ I: it is a binary relation such that

irreflexivity, asymmetry and transitivity hold.
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Proof. Root dominance is irreflexive: by Lemma 1, b(s′′i ) 6= ∅, and it is not possible

to have Ui(si, s−i) > Ui(si, s−i) for any profile s−i ∈ S−i. Then, RD2 cannot be

respected. Root dominance is transitive: assume s′′i ≻ s′i and s′′′i ≻ s′′i . Here, we have

to prove that s′′′i ≻ s′i. First, it is straightforward that RD1 is respected. Second, since

s′′′i ≻ s′′i , we know that Ui(s
′′′
i , s−i) > Ui(s

′′
i , s−i) for each strategy profile s−i contained

in b(s′′′i ). Since s′′i ≻ s′i, Ui(s
′′
i , s−i) ≥ Ui(s

′
i, s−i) for each strategy profile s−i in S−i,

and thus for each strategy profile s−i contained in b(s′′′i ). Therefore, Ui(s
′′′
i , s−i) >

Ui(s
′′
i , s−i) ≥ Ui(s

′
i, s−i) for each strategy profile s−i contained in b(s′′′i ) and RD2 is

respected. Finally, irreflexivity and transitivity together imply asymmetry. �

Lemma 2. If s′i ∈ Si is root dominated, there is (at least) one strategy s′′i ∈ Si that may

eliminate it, i.e., s′′i is not root dominated by any strategy in Si and s′′i root dominates

s′i.

Proof. Since the number of strategies is finite, the number of strategies root dominating

s′i is necessarily finite. Let us denote it m and denote g(s′i) the set of these strategies.

Then, (at most) m − 1 of these strategies are root dominated. Otherwise, it means

that the mth strategy is root dominated by an other strategy outside g(s′i)
12. By

transitivity of root dominance, it means that the latter strategy also root dominates

s′i, contradicting the fact that the number of strategies root dominating s′i is m. If

less than m− 1 strategies are root dominated, we do have that there is (at least) one

strategy that is not root dominated by an other strategy and which root dominates

s′i. �

The next lemma establishes that the set b(si) never expands as we progress through

the steps of IERDS:

Lemma 3. ∀{Γλ}λ≤Λ, ∀λ ∈ [[0,Λ− 1]], , ∀i ∈ I, ∀si ∈ Sλ+1
i ,

b
λ+1(si) ⊆ b

λ(si).

Proof. Assume there exists a profile s′ ≡ Π
k∈I

s′k ∈ b
λ+1(si) \ b

λ(si). Since s′ /∈ b
λ(si)

but s′ ∈ b
λ+1(si), we know that there is no best response in s′ at λ but also that (at

least) one player j best responds with the strategy s′j to s′−j at λ+1. Thus, we assume

that there is (at least) one player j 6= i with a best response s′′j ∈ Sλ
j to s′−j, eliminated

at step λ+ 1 such that:

Uj(s
′′
j , s

′
−j) > Uj(s

′
j , s

′
−j).

12By Proposition 1, root dominance is asymmetric and transitive. Then, there is at least one

strategy (the mth here) that is not root dominated by a strategy in g(s′i). Indeed, if each strategy is

root dominated by a strategy in g(s′i), one can find a contradiction with asymmetry and transitivity.
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Since s′′j is root dominated, then by Lemma 2 s′′j is root dominated by (at least) an

uneliminated strategy s′′′j , present at step λ+1. Since s′′j is a best response for j to the

profile s′−j, we necessarily have Uj(s
′′
j , s

′
−j) = Uj(s

′′′
j , s

′
−j) > Uj(s

′
j, s

′
−j). Therefore, at

step λ+ 1, player j still wants to deviate from s′j to s′′′j . It contradicts the hypothesis

that s′j is a best response for j at step λ+1 and finally it contradicts that s′ ⊆ b
λ+1(si).

�

This property would not be true if, for instance, we considered only profiles where

each opponent plays a best response. Clearly, either these profiles could not exist, or

they could be eliminated (see Appendix C), inducing new profiles in b(si) where a

“new” maximal payoff would be obtained.

Now we establish that the relation of root dominance between two strategies is

maintained through the steps of IERDS:

Lemma 4. ∀{Γλ}λ≤Λ, ∀λ ∈ [[0,Λ − 2]], ∀i ∈ I, ∀s′i, s
′′
i ∈ Sλ+1

i , if s′′i ≻ s′i in Γλ, then

s′′i ≻ s′i in Γλ+1.

Proof. Assume s′′i ≻ s′i in Γλ. It is straightforward that RD1 is still verified in Γλ+1.

By Lemma 3, we know that for any strategy si, b
λ+1(si) ⊆ b

λ(si). Therefore RD2, is

still verified as well. �

Note that bλ(s′′i ) being not empty for each λ by Lemma 1, there is still a profile such

s′′i strictly payoff dominates s′i. Besides, remark that we consider only λ ∈ [[0,Λ − 2]]

for a given sequence because in ΓΛ no strategy is root dominated.

Now, we define a notion introduced by Apt (2011), namely the hereditariness of

a dominance relation. Hereditariness is useful to establish order independence of the

procedure associated with the dominance relation which verifies it. Denote c(Γ), the Γ-

choice, i.e. the set of strategies in S which are not dominated in Γ (given a dominance

relation). Hereditariness means that no strategy previously dominated becomes non

dominated after one step of a process:

Definition 6. A dominance relation is said to verify hereditariness if ∀{Γλ}λ≤Λ, ∀λ ∈

[[0,Λ− 1]],

Γλ,Γλ+1 ∈ {Γλ}λ≤Λ ⇒ c(Γλ+1) ⊆ c(Γλ).

Note that hereditariness is called 1-Monotonicity* in Luo et al. (2020). Here, we

verify that root dominance is hereditary:
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Lemma 5. Root dominance verifies hereditariness. It is also equivalent to the fol-

lowing statement: ∀{Γλ}λ≤Λ, ∀λ ∈ [[0,Λ − 2]], ∀i ∈ I, ∀s′i ∈ Sλ+1
i , if s′′i ∈ Sλ

i root

dominates s′i in Γλ, then s′i is still root dominated in Γλ+1.

Proof. First, if s′′i ∈ Sλ+1
i , by Lemma 4, the result is immediate, i.e. RD1 and RD2

are still respected. Second, if s′′i /∈ Sλ+1
i , then by Lemma 2 there is (at least) a

strategy s′′′i that eliminates s′′i . By Proposition 1, each strategy that root dominates

s′′i root dominates s′i as well in Γλ. Thus, there is still (at least) one strategy that root

dominates s′i in Γλ+1. �

By Apt (2011, Theorem 1), we know that hereditariness implies, in finite games,

order independence of the procedure associated with the dominance relation. The

following result, a corollary of Lemma 5, illustrates with another perspective why our

elimination procedure is order independent. In the words of Dufwenberg and Stegeman

(2002); Luo et al. (2020), each root dominated strategy has an undominated root

dominator, i.e. each root dominated strategy at a point of a sequence of games will

be deleted by the end of the sequence:

Proposition 2. ∀{Γλ}λ≤Λ, ∀λ ∈ [[0,Λ− 1]], ∀i ∈ I, ∀si ∈ Sλ
i root dominated in Γλ ,

si /∈ ΓΛ.

Proof. The proof is made by applying an induction reasoning on Lemma 5. Assume

a process of IERDS applied to the game Γ, and the associated sequence of games

{Γλ}λ≤Λ. Assume si is root dominated at step λ−1. By the definition of the sequences

of games, si is eliminated, and si is not in ΓΛ. Now assume the property that a root

dominated strategy si at Λ − µ is not in ΓΛ for a given µ ∈ [[2,Λ − 1]] is true. Let us

show it is true for µ+1. Thus, assume that si is root dominated at Λ− (µ+1). Either

si is eliminated at this step and we have the result, or, it is not eliminated. In this

latter case, by Lemma 5, si is root dominated at Λ − µ, and therefore, we have the

result by the induction hypothesis. We have shown that a strategy root dominated

at Λ− (µ+ 1) was deleted by the end of the sequence. Thus, by induction, it is true

for each µ ∈ [[2,Λ]]. Since we did not need any assumption on the process used to

construct our initial sequence, this result is true for any process. �

4.2 Main result

Theorem 1. IERDS is order independent in finite games.

Proof. By Lemma 5 and Apt (2011, Theorem 1), the result is immediate. �
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5 Related literature about other elimination pro-

cedures

In an unifying framework gathering weak and strict dominances, Hillas and Samet

(2020) eliminate flaws, i.e., strategy profiles rather than strategies. A flaw deletion

occurs if playing the given flaw implies that an agent plays a dominated strategy. If

flaws elimination is used, then weak and strict dominance are order independent in

finite games (Hillas and Samet (2020, Proposition 1)). Therefore, weak dominance

rationality seems to be as legitimate as strict dominance rationality if iterated elimi-

nation of flaws is considered13. Nevertheless, the purpose in Hillas and Samet (2020) is

mainly to rationalize the use of weak dominance. Moreover, the iterative elimination

of flaws does not actually eliminate the profiles or strategies from the original game

that is considered. Rather, eliminated profiles or strategies are seen as not playable

by the agents, but they may be used in order to justify further flaws deletions.

In the same vein, Asheim and Dufwenberg (2003) refine the notion of permissibility

of Dekel and Fudenberg (1990)14 with full permissibility sets and the associated iterated

elimination of choice sets under full admissible consistency (IECFA). IECFA considers

strategy subsets (and not strategies like in IESDS or IEWDS). Roughly speaking,

IECFA eliminates weakly dominated strategies, and then keeps a strategy subset of

the first player if there is at least a surviving opponent’s subset such that considering

only the profiles contained in this opponent’s subset, the strategies in the subset of the

first player are the only undominated strategies (i.e. not weakly dominated strategies).

The outcome of IECFA is made of subsets. All these subsets can correspond to a belief

about a surviving opponent’s subset, but the beliefs do not have to be consistent

between players (like in rationalizability and contrary to Nash equilibrium). IECFA is

order independent by definition. Indeed, like the Dekel-Fudenberg (DF) procedure of

Dekel and Fudenberg (1990), each eliminable strategy (subset) is eliminated at each

step. Nevertheless, the outcome still exhibits multiplicity.

An other procedure based on beliefs is the reasoning-based expected utility proce-

dure (RBEU) of Cubitt and Sugden (2011). RBEU is an iterated procedure in which

strategies are accumulated15 if there is no belief such that another strategy gives a

strictly higher payoff to the player (the strategy is dominant). If a player’s strategy

13Interestingly, in finite games, the outcome of IEWDS is contained in the outcome of weak flaws

elimination and the outcome of IESDS is equal to the outcome of strict flaws elimination. Then, one

may wonder whether the order independence of IESDS in finite games may only be due to the fact

that IESDS is incidentally equivalent to strict flaws elimination.
14A strategy is permissible if, after one round of elimination of all the weakly dominated strategies,

it survives to the iterated elimination of strictly dominated strategies.
15Briefly, accumulated strategies are the undeletable strategies.
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is accumulated, the procedure allows only opponents’ beliefs which allocate a strictly

positive probability to the occurrence of this strategy. Strategies which are always

strictly dominated for these beliefs are deleted and so on. It is immediate by its defini-

tion that RBEU deletes (at least) as many strategies as IESDS in finite games. Thus,

RBEU refines IESDS. Moreover, it is order independent in finite games, contrary to

IEWDS. However, RBEU refines strictly IESDS if and only if there is (at least) a

dominant strategy, a quite huge requirement.

6 The mutability problem

Now, we define the second consistency requirement we are concerned with, namely

immutabilty. Note that we call mutability what Cubitt and Sugden (2011) call “un-

dercutting problems” and what Hillas and Samet (2020) call “inconsistency”. Samuel-

son (1992) contrasts iterated admissibility (i.e. IEWDS) and common knowledge of

admissibility by emphasizing this inconsistency with the following words:

The difference in these two outcomes reflects the fact that once a strategy

[...] is eliminated by iterated admissibility, it cannot return even if the

reason for its elimination has been purged.

First, we introduce the notion of virtual domination:

Definition 7. A strategy eliminated by a process is said virtually dominated if, added

to the final outcome of the process, it is a dominated strategy.

Definition 8. A procedure is immutable (for a given game) if in each process associated

to it (for this given game), all eliminated strategies are virtually dominated.

Table 1 summarizes the inconsistencies associated to the procedures we have men-

tioned above. Now, we study in details these “inconsistencies” of IEWDS through

various versions of an example taken in Hillas and Samet (2020). Note that such re-

marks had been already formulated in Samuelson (1992) for instance. We compare

IERDS to the solution of Hillas and Samet (2020) to deal with these inconsistency

problems, namely the flaws elimination or also called deletion of inferior profiles16.

Following Stalnaker (1994), Hillas and Samet (2020) propose to eliminate profiles

(rather than strategies) such that if they were played, it would mean that a (weakly)

16See also Bonanno and Tsakas (2018) who study the properties of the so-called iterated deletion

of inferior profiles (IDIP) in a framework with ordinal utilities.
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Inconsistencies Definitions Procedures

Dependence

Order

affects the final outcome

The order of elimination
IEWDS

Mutability

at a previous step

it is dominated

whereas

not dominated

A strategy may be virtually

IEWDS, IECFA, DF

Table 1: Inconsistencies of Elimination Procedures in Finite Games

dominated strategy is effectively played. We illustrate mutability with the following

example, such that −→
IEWDS

means that a process of IEWDS is run (and gives the final

outcome when cells color is blank), and the cells in blue indicates eliminated strategies

but which are non virtually dominated after the process has been terminated:

j’s Strategy

i’s Strategy L R

T (2,1) (3,0)

B (2,0) (2,1)

−→
IEWDS

j’s Strat.

i’s Strat. L

T (2,1)

B (2,0)

Figure 3: Hillas and Samet (2020)’s Game with IEWDS Mutability

The game of Figure 3 has one pure Nash equilibrium (T, L). T weakly dominates

B. If B is eliminated, then R is strictly dominated and the surviving outcome is (T, L),

the pure Nash equilibrium. However, as mentioned by Hillas and Samet (2020), this

iterated deletion is inconsistent. Indeed, if R is eliminated, then B is not weakly domi-

nated anymore and then (T, L) should not be the only surviving outcome. Weak flaws

elimination of Hillas and Samet (2020) deletes profiles (B,R) (because if this profile is

played, it means that strategy R is played, implying that B is weakly dominated), and

then (T,R) (after eliminating (B,R), R is strictly dominated by L). Outcomes (T, L)

and (B,L) are surviving. Thus, there is no mutability. IERDS deletes no strategy.

Now, we slightly modify the payoffs matrix in a way that yields order dependence of

IEWDS outcome:
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j’s Strategy

i’s Strategy L R

T (2,1) (3,1)

B (2,0) (2,1)

−→
IEWDS

j’s Strategy

i’s Strat. L R

T (2,1) (3,1)

or

j’s Strategy

i’s Strat. L R

T (2,1) (3,1)

Figure 4: Modified Game with IEWDS Order Dependence (and Mutability)

In this modified version of the game, a second pure Nash equilibrium appears:

(T,R). T weakly dominates B and R weakly dominates L. If B is eliminated, then L

is not dominated and both Nash equilibria survive. On the opposite, if L is eliminated,

so is B, and the only surviving outcome is (T,R) (note that only the outcome (T,R)

can be achieved as well by eliminating B and L at the same step). There, IEWDS

is order dependent. It may also generate mutability. Indeed, if the final outcome is

(T,R), then the strategy L is not virtually dominated. Hillas and Samet (2020)’s

deletion procedure eliminates both profiles (B,R) and (B,L), letting the two Nash

equilibria survive. IERDS deletes no strategy.

Now, we focus on the last example of this section:

j’s Strategy

i’s Strategy L R

T (2,0) (3,1)

B (2,1) (2,0)

−→
IEWDS

j’s Strat.

i’s Strat. R

T (3,1)

Figure 5: Modified Game with a Unique Prediction for IEWDS (and IERDS)

In this last version of the game, there are two Nash equilibria: (B,L) and (T,R).

T weakly dominates B. If B is eliminated, then, R dominates L and the only outcome

is (T,R). There, IEWDS is not mutable. Indeed, since R is played and thus une-

liminated, T does weakly dominate B. It is order independent as well. Moreover, it

predicts a unique outcome whereas the Hillas and Samet (2020)’s procedure eliminates

only the profile (B,R), letting the two Nash equilibria survive. To compare IERDS to

another procedure, notice that RBEU of Cubitt and Sugden (2011) accumulates the

strategy T , but then stops17. IERDS deletes B, leading to the unique outcome (T,R).

17Even if T is played with a strictly positive probability, for all j′s beliefs where B is played with

a higher probability, L is optimal and cannot be deleted.
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To sum up, in these various examples, when weak dominance is mutable or or-

der dependent, our elimination procedure deletes less strategy than IEWDS. When

IEWDS is both non mutable and order independent, our elimination procedure pre-

dicts the same outcome as IEWDS (see Appendix E for an attempt to generalize this

discussion in two-player games), being more predictive than weak flaws elimination of

Hillas and Samet (2020) or RBEU of Cubitt and Sugden (2011).

Now, we state the result of this section, i.e., the immutability of IERDS. With the

help of sequences of games, we recall what is immutability: a procedure is immutable

if there is no process associated with it such that at the end of the sequence of game,

there is no strategy s′i ∈ S0
i \ SΛ which is not dominated in the game formed by ΓΛ

and the strategy s′i, i.e. the game Γ′ (with the same players and utilities as ΓΛ) and

the strategy set SΛ∪s′i. Now, we can state that there is no mutability in any sequence

of games generated by IERDS:

Theorem 2. IERDS is immutable in finite games.

Proof is relegated to Appendix A.

7 Mixed root dominance

Consider the mixed extension of a game Γ and denote Σ the set Π
i∈I

Σi ≡ Π
i∈I

∆(Si) the

set of all (mixed) strategies. Thus, σi ∈ Σi is a mixed strategy if it is a probability

distribution over the set Si of pure strategies. As in the pure strategy case, we denote

Σ−i the set Π
j∈I\{i}

Σj ≡ Π
j∈I\{i}

∆(Sj), the strategy profiles set of i’s opponents. Let

σi(si) be the probability that si is effectively used when σi is played and denote Rσi
=

{si ∈ Si|σi(si) > 0} the support of σi
18. We apply the definition of a Best Reply Set

to mixed strategies in the same way as in the pure strategy case:

Definition 9. The Best Reply Set to σ′′
i ∈ Σi, denoted b(σ′′

i ), is the set of all strategy

profiles σ∗ ∈ Σ such that:

σ∗
i = σ′′

i , and, if S−i 6= ∅:

∃j ∈ I \ {i}, σ∗
j ∈ argmax

σj∈Σj

Uj(σj , σ
∗
−j) (OM′)

Now, we extend the notion of Best Reply Set to strategy subsets:

18Note that this definition of the support cannot be weakened by allowing e.g. a continuous

distribution as a support. We clarify this point below.
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Definition 10. For any strategy subset S̄i ⊂ Si, we denote b(S̄i) = ∪
σi∈∆S̄i

b(σi) the

Best Reply Set to the strategy subset S̄i.

Note that if the subset is a singleton, Definitions 3 and 10 obviously coincide.

Importantly, in order to define mixed root dominance, we will use the Best Reply Set

to the strategy subset formed by the support of the mixed strategy:

Definition 11. A strategy s′i ∈ Si is said root dominated by the mixed strategy σ′′
i ∈ Σi

whose support is Rσ′′

i
, if:

∀s−i ∈ S−i: Ui(σ
′′
i , s−i) ≥ Ui(s

′
i, s−i) (RD1′)

∀σ∗
−i such that σ∗ ∈ b(Rσ′′

i
): Ui(σ

′′
i , σ

∗
−i) > Ui(s

′
i, σ

∗
−i) (RD2′)

Definition 11 is in fact a generalization of Definition 4. Besides, if the Best Reply

Set to σ′′
i ∈ Σi was defined such that it contained only the best responses to σ′′

i , root

dominance would lack hereditariness. Assume a mixed strategy σ′′
i ∈ Σi composed of

two pure strategies in Si, s
′′
i and s′i such that σ′′

i ≻
S
s′i. Then, it is immediate that s′′i

strictly dominates s′i. Here, the point is that the mixed strategy is not necessary to

establish that s′i is strictly dominated: that is, even if σ′′
i is eliminated, s′′i still strictly

dominates s′i
19. Concerning root dominance, the fact is that mixing does not affect

only the payoffs, it affects also the set of best responses. In order to keep hereditariness,

all the best responses to strategies contained in ∆(Rσ′′

i
) have to be considered. We

can see it with the next example, where we use directly Definition 4 to define root

dominance by mixed strategies and not Definition 11:

j’s Strategy

i’s Strat. L C R

T (4,0) (4,0) (0,0)

M (4,0) (4,0) (4,0)

B (0,0) (4,2) (8,1)

with dominance relations:

R ≻L

σR ≻L,R

C ⊁ L,R

Figure 6: Order Dependence Issue with Definition 4 applied to Mixed Strategies

Strategy C weakly dominates both L and R. However, it does not root dominate

them, player i best responding to C with the three strategies T , M and B. Now, look

19A different property but implying similar consequences is established for root dominance in

Lemma 7.
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at any mixing σR of C and R. Then, i’s best response is only B. Instead, for any

mixing σL of C and L, i’s best responses are T and M .

Thus, if b(σR) = (σR, B), σR root dominates R. Besides, R root dominates L. On

the opposite, if b(σL) = {(σL, T ), (σL,M)}, σL does not root dominates L. Therefore,

both L and R are root dominated but only R root dominates L. Consequently, if R

is eliminated before L, L cannot be eliminated at any further step, showing that the

procedure would be order dependent. When we apply Definition 11, the dominance

relation is modified such that:

σR ⊁R and σR ⊁L

Then, order dependence disappears and only strategy L is eliminated.

The next result states that mixed strict dominance implies mixed root dominance:

Lemma 6. σ′′
i ≻

S
si ⇒ σ′′

i ≻ s′i.

The proof is straightforward since strict dominance implies trivially both RD1′ and

RD2′.

The next example shows how mixed IERDS behaves with respect to pure IERDS. It

presents the final outcome associated to each procedure. Assume a Bertrand duopoly

where the marginal cost is zero, the market size equal to 1 and admit as classically

that when both firms set the same price, the market is equally shared. Then we have

following payoffs matrix:

j’s Strategy

i’s S. 0 1 2 3 4

0 (0,0) (0,0) (0,0) (0,0) (0,0)

1 (0,0) (0.5,0.5) (1,0) (1,0) (1,0)

2 (0,0) (0, 1) (1, 1) (2,0) (2,0)

3 (0,0) (0,1) (0, 2) (1.5,1.5) (3,0)

4 (0,0) (0,1) (0,2) (0,3) (2,2)

−→
pure IERDS

j’s Strategy

i’s S. 1 2 3 4

1 (0.5,0.5) (1,0) (1,0) (1,0)

2 (0, 1) (1, 1) (2,0) (2,0)

3 (0,1) (0, 2) (1.5,1.5) (3,0)

4 (0,1) (0,2) (0,3) (2,2)

Figure 7: Symmetric Discrete Bertrand Game after Pure IERDS

Once the strategies 0 are eliminated, no strategy is any longer root dominated by a

pure one. However, one can find a mixture of strategies 1, and 3 that root dominates

the strategy 4 (it is enough to have a weight higher than 2
3
for strategy 3 and a strictly
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positive weight for 1). After elimination of the strategies 4, some mixtures of strategies

1 and 2 can strictly dominates the strategy 3 (it is enough to have a weight higher than
1
2
for strategy 2 and a strictly positive weight for 1). Once strategies 3 are eliminated,

we can show that strategies 2 are root dominated by 1.

j’s Strategy

i’s S. 0 1 2 3 4

0 (0,0) (0,0) (0,0) (0,0) (0,0)

1 (0,0) (0.5,0.5) (1,0) (1,0) (1,0)

2 (0,0) (0, 1) (1, 1) (2,0) (2,0)

3 (0,0) (0,1) (0, 2) (1.5,1.5) (3,0)

4 (0,0) (0,1) (0,2) (0,3) (2,2)

−→
mixed IERDS

j’s S.

i’s S. 1

1 (0.5,0.5)

Figure 8: Symmetric Discrete Bertrand Game after Mixed IERDS

The next result demonstrates that a strategy s′i ∈ Si root dominated by a mixed

strategy whose support contains s′i is also root dominated by another strategy whose

support does not contain s′i:

Lemma 7. If s′i ∈ Si is root dominated by σ′′
i ∈ Σi such that Rσ′′

i
= (Ši ∪ s′i) (with

Ši ⊂ Si which contains at least one strategy different from s′i), then s′i and σ′′
i are root

dominated by σ′′′
i ∈ Σi such that Rσ′′′

i
= Ši.

Proof. Assume s′i ∈ Si is root dominated by σ′′
i ∈ Σi. Thus, σ′′

i weakly dominates s′i.

Then, we can construct σ′′′
i ∈ Σi such that the weight of each pure strategy forming

σ′′′
i is proportionally the same as in σ′′

i when s′i is removed from the support. It is

clear that σ′′′
i weakly dominates σ′′

i (and s′i). Indeed, the average payoff is (weakly)

increased when s′i is removed, since the payoff to i of s′i against any profile is below

the average payoff of σ′′
i . Furthermore, we know that σ′′

i strictly payoff dominates s′i

on b(Rσ′′

i
). For the same reason, it is clear that σ′′′

i strictly payoff dominates σ′′
i (and

s′i) on b(Rσ′′

i
). By construction, b(Rσ′′′

i
) ⊂ b(Rσ′′

i
). Therefore, σ′′

i (and s′i) are root

dominated by σ′′′
i . �

This result allows us to keep the result of Lemma 2, and then to show order

independence of mixed IERDS:

Theorem 3. Mixed IERDS is order independent.

Proof. By adding Lemma 7, all results of Section 4 hold true when we apply the mixed

framework. See Appendix G for more details. �
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Finally, we can establish the next statement:

Theorem 4. Mixed IERDS refines mixed IESDS.

This result is a direct implication of Lemma 6 and Theorem 3.

To be clear this result means that in some games, mixed IERDS refines strictly

mixed IESDS and in other games, they have the same outcome.

In the next section, we will simply write IERDS for mixed IERDS.

8 Rationality concepts

First, we recall that in the standard framework, in a two-player game, a strategy s∗i is

rational if and only if there is a strategy for j such that σ∗
i maximizes the utility of i:

Definition 12. A strategy s∗i is rational if:

∃σj ∈ Σj , such that ∀σi ∈ Σi,

Ui(s
∗
i , σj) ≥ Ui(σi, σj)

By Pearce (1984, Lemma 3), in a two-player game, a strategy is not rational if

and only if it is strictly dominated. In the remaining of the paper, we will restrict

ourselves to two-player games as well. Furthermore, Pearce (1984, Lemma 4) shows

that a strategy is weakly dominated if and only if it is not a best response to any totally

mixed profile. That is, beliefs are said cautious,i.e., players believes that opponents

plays only full support strategies). This cautiousness is justified by the fact that

players may not exclude totally the possibility that opponents can play any strategy.

Yet, this view is apparently in contradiction with the belief that weakly dominated

strategies should not be played. Indeed, admissibility requires that agents consider

possible that opponents play all their strategies with positive probability. It means

that each agent believes that his opponents will play non admissible strategies. This

is emphasized by Samuelson (1992) as the third issue with IEWDS:

The process appears initially to call for agents to assume that opponents

may play any of their strategies but subsequently to assume that opponents

will certainly not play some strategies.

This problem is known as the inclusion-exclusion challenge (see Barelli and Galanis

(2013)) and has opened a rich literature attempting to reconcile weak dominance

rationality with consistency.
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Brandenburger (1992); Stahl (1995); Brandenburger et al. (2008) propose to use

the lexicographic probability system introduced in Blume et al. (1991) to characterize

weak dominance rationality. In a word, it is assumed players believe that when a

strategy is eliminated, it is infinitely less likely to be played with respect to remain-

ing strategies, but still infinitely more likely to be played than previously eliminated

strategies. Therefore, the inclusion-exclusion challenge is solved in an elegant way: a

weakly dominated strategy is unlikely to be played and at the same time not totally

unlikely if “necessary”. In contrast with the view defended in Samuelson (1992), Bran-

denburger et al. (2008) state that: “A player is rational if he optimizes and also rules

nothing out.” Alternatively, Barelli and Galanis (2013) introduce the notion of event-

rationality which allows two levels of beliefs. A first which is standard, and a second

one used in case of equivalence between two strategies. When there is equivalence, a

player can break ties by using opponents’ strategies deemed unlikely. Therefore, again,

even dominated strategies are never totally excluded of the players’ “thoughts”. The

rationality concepts we introduce do consider thought experiments but contrasts with

the option proposed in Barelli and Galanis (2013): our experiments assume a certain

sense of rationality about the opponent’s play at the second level of belief.

In the next subsection, we will assume that some perturbations of the game can

occur with probability ǫ > 0. Considering ruling out “unreasonable” Nash equilibria

in extensive-form games, Selten (1975) formalizes this idea with the notion of perfect

equilibria, which are Nash equilibria robust to the possibility that agents may deviate

(by mistakes). Additionally, Fudenberg et al. (1988) introduce the idea that payoffs

knowledge might not be complete, i.e., agents are unsure about their own payoffs and

others’ payoffs. Therefore, the authors introduce forward induction in the reasoning:

the deviation is not necessarily a mistake but might be a “signal”. The DF procedure

of Dekel and Fudenberg (1990) is the outcome of such games where agents are un-

certain about payoffs. Besides, Börgers (1994) shows that the DF procedure can also

be the result of approximate common knowledge of weak dominance rationality (i.e.

each player believes that his opponents play strategies with full support). That is,

Börgers (1994) assumes that weak dominance rationality is common knowledge with

probability p. When p converges to 1, agents plays only strategies which remain after

the DF procedure.

The kind of perturbations we introduce does not consider such payoff uncertainties.

Rather, we are closer to Selten (1975)’s idea that a player may observe “mistakes”

and react optimally. We also relate to Hamilton and Slutsky (2005) who study the

possibility that an agent takes into account his own errors. More precisely, we consider

simultaneous games where an agent can generate reactions by his own thoughts. We

suppose that despite having a “reference” strategy, a player may alternatively consider
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some strategy subsets with probability ǫ. If so, the opponent reacts optimally (in a

naive way) to this strategy subset. Thus, the reference strategy is “tested” against

such mind trembles. “Mind trembles” can be seen as potential trembles which will be

realized only if they are profitable. For instance, assume a poker player who sets a

reference strategy before the game starts. However, he knows that during the play he

may be tempted to adopt another strategy with probability ǫ: this is a mind tremble.

Now, if the reference strategy is not optimal when he believes that the opponent can

detect this tremble and react optimally, the tremble should be realized and, in fact

the reference strategy never played in such a game.

Therefore, we assume a framework with conjectural variations (see our discussion

below in Section 8.3). Then, we introduce the concept of local ǫ-rationality which

selects the strategies maximizing i’s utility when i forms conjectures about j’s reac-

tions to mind trembles, those occurring with probability ǫ. With respect to the usual

conjectural variation framework, two differences operate: (i) an actual deviation is not

required but a mind tremble is enough to generate the opponent’s reaction, and (ii)

reaction is said rational, i.e., agent i conjectures that j will play a best response to the

mind tremble.

In Appendix I we propose two others perturbations that lead to two additional

characterization of root undominance by rationality.

8.1 Characterization of root undominance by rationality

In order to characterize root undominance, we define in this subsection a new rational-

ity concept called local ǫ-rationality. For this purpose, we introduce first a conjectural

system Cij for player i about strategies of player j when a perturbation occurs (with

probability ǫ). We say that player i has a mind tremble when he thinks of a strategy

subset Ši ⊂ Si whereas he has a reference strategy σi ∈ Σi. Finally, for each strat-

egy subset Ši ⊂ Si, i believes that j will play a certain strategy sj with probability

Cij

(
Ši, sj

)
if i has a mind tremble towards Ši.

We define Cij as a mapping from the tuple formed by the product of the power

set P(Si)
20 of Si and j’s strategy set Sj to [0, 1]. Our conjectural system is naturally

reminiscent of the conjectural variation theory (see our discussion below in Section 8.3),

except that we consider strategy subsets.

Definition 13. A conjectural system Cij is the mapping Cij := P(Si) × Sj → [0, 1]

which associates any i’s strategy subset with a pure strategy for j to a probability, that

20The power set of Si is the set containing all the subsets of Si.
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is, it satisfies: ∀Ši ∈ P(Si),
∑

sj∈Sj

Cij

(
Ši, sj

)
= 1.

According to i’s belief, Cij

(
Ši, sj

)
is the probability that j will play sj if he “ob-

serves” that i thinks of a strategy whose support is Ši. We denote Cij the set of all

conjectural systems of i about j.

Before going further, we define an additional notion which will be useful below,

namely, the expected ǫ-perturbed utility :

Definition 14. The expected ǫ-perturbed utility of i from playing σi when j plays σj

in the game without perturbation and σ̂j in the game with perturbation is:

V ǫ
i (σi, σj , σ̂j) ≡ (1− ǫ)E[Ui(σi, σj)] + ǫE[Ui(σi, σ̂j)]

Simply, the ǫ-perturbed utility formalizes the expected utility when player i has the

belief that j plays σj with probability 1−ǫ and σ̂j with probability ǫ. In the remainder

of the paper, we will see σj as the “normal” or standard belief (the belief when no

exogenous event occurs), and we will assume that σ̂j is played when a perturbation

occurs. We emphasize that it does not mean that an extensive form game is played.

Rather, the thoughts of i (about his own play) influence his beliefs about j’s actions

with probability ǫ.

For a given mixed strategy σi ∈ Σi of player i, we recall that we denote σi(si) the

probability that si to be drawn when σi is chosen. Now, we introduce a new rationality

concept in association to a conjectural system:

Definition 15. A strategy si ∈ Si is locally ǫ-rational if:

∃σj ∈ Σj , ∃Cij ∈ Cij , such that ∀σi ∈ Σi, if we set:

σ∗
j with σ∗

j (sj) ≡ Cij (Rσi
, sj) then we have,

V ǫ
i (si, σj , σ

∗
j ) ≥ V ǫ

i (σi, σj, σ
∗
j )

From now, distinctly from the conjectural variation theory, we assume that the

conjectures are rational (see our discussion below in Section 8.3), i.e., Cij

(
Ši, sj

)

cannot be strictly positive unless sj ∈ b(Ši):

Assumption R. Cij is a rational conjectural system (with Rij the set of such rational

conjectural systems), i.e.:

∀
(
Ši, sj

)
∈ P(Si)× Sj , Cij

(
Ši, sj

)
> 0 ⇒ sj ∈ b(Ši)

Now, we can re-write our definition:

23



Definition 16. Under Assumption R, a strategy si ∈ Si is locally ǫ-rational if:

∃σj ∈ Σj , ∃Cij ∈ Rij , such that ∀σi ∈ Σi, if we set:

σ∗
j with σ∗

j (sj) ≡ Cij (Rσi
, sj) then we have:

V ǫ
i (si, σj , σ

∗
j ) ≥ V ǫ

i (σi, σj, σ
∗
j )

Under Assumption R, a strategy si ∈ Si is locally ǫ-rational if there is a belief σj

and a rational conjectural system Cij such that the expected utility of si is larger than

any tested σi ∈ Σi. That is, si is optimal if i believes that j plays σj with probability

1− ǫ and reacts optimally to the tested σi with probability ǫ.

Naturally, we can establish the following result that simplifies the previous defini-

tion:

Lemma 8. Under Assumption R, a strategy si ∈ Si is locally ǫ-rational if and only if

it verifies:

∃σj ∈ Σj , such that ∀σi ∈ Σi, ∃σ
∗
j ⊂ b(Rσi

), V ǫ
i (si, σj , σ

∗
j ) ≥ V ǫ

i (σi, σj, σ
∗
j ) (1)

Proof. Assume si is locally ǫ-rational. Then, there is σj ∈ Σj and a rational conjectural

system Cij against which si (weakly) payoff dominates all other strategies in Σi. That

is, if we compare si to any σi ∈ Σi, we use with probability 1− ǫ the strategy σj and

with probability ǫ the strategy σ∗
j such that σ∗

j (sj) ≡ Cij (Rσi
, sj). By Assumption R,

we know that all sj are in b(Rσi
). Therefore, σ∗

j is in b(Rσi
). Finally, we can write

that:

∃σ̃j ∈ Σj , ∀σi ∈ Σi, ∃σ
∗
j ⊂ b(Rσi

) such that:

V ǫ
i (si, σ̃j , σ

∗
j ) ≥ V ǫ

i (σi, σ̃j , σ
∗
j ) (1)

Conversely, assume the above Equation (1). If this is true we can construct a

rational conjectural system Cij by using the hyperplane theorem. Assume a strategy

subset Ši ∈ P(Si). Consider the vectors
−→
V ǫ
i (σi, Ši) = {V ǫ

i (σi, sj, s
∗
j)}sj∈Sj ,s

∗

j
⊂b(Ši)

21 for

each σi ∈ si ∪∆(Ši). Simply, these vectors are such that each component l+m is the

payoff i can obtain when playing σi and when j plays the pure strategy slj ∈ Sj with

probability 1 − ǫ and the pure strategy s∗
m

j ⊂ b(Ši) with probability ǫ. We denote

Y (si, Ši) the set of such vectors. Besides, we can construct the following set X . If k is

equal to ♯(Sj)× ♯(b(Ši))
22, then X is the set

{
x ∈ Rk |x >

−→
V ǫ
i (si)

}
, that is the set of

21Note that we make a slight abuse of notation here: we consider s∗j ⊂ b(Rσi
) if ∃σj ⊂ b(Rσi

) and

sj ∈ Rσi
. For technical reasons, we consider only pure strategies but all mixed strategies in the Best

Reply Set are well present through the pure strategies that support them.
22We denote ♯(Si) the number of elements in the set Si. According to the above footnote, ♯(b(Ši))

is well finite.
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all payoffs that strictly dominate si payoffs. Both X and Y (si, Ši) are convex sets. By

Equation (1), these sets are disjoint. Then, we can apply the separating hyperplane

theorem which states that there is a vector in Rk, π ≥ 0 with π 6= 0 and such that:

∀y ∈ Y (si, Ši), ∀x ∈ X, π · y ≤ π ·
−→
V ǫ
i (si) ≤ π · x

It directly implies that ∀σi ∈ si ∪∆(Ši), π ·
(−→
V ǫ
i (si)−

−→
V ǫ
i (σi)

)
≥ 0.

Especially, there is such a vector π̃ such that ∀l ∈ [[1, ♯(Sj)]], π̃(l) = (1−ǫ)×σ̃j(σ
l
j),

since the hypothesis that Equation (1) is verified implies (by continuity of V ǫ
i in ǫ)

that:

∀σi ∈ Σi, Ui(si, σ̃j) ≥ Ui(σi, σ̃j)

Thus we can have ∀σi ∈ si ∪∆(Ši), π̃ ·
(−→
V ǫ
i (si)−

−→
V ǫ
i (σi)

)
≥ 0 when ǫ → 0+.

Now, we can start constructing the rational conjectural system Cij by setting

∀s∗
m

j ⊂ b(Ši), Cij(Ši, s
∗m

j ) ≡ π(♯(Sj) +m)

It is clear that it is rational since s∗
m

j ⊂ b(Ši) We can apply all the previous reasoning

to each Ši ∈ P(Si) with ∀Ši ∈ P(Si), ∀l ∈ [[1, ♯(Sj)]], π̃(l) = (1− ǫ)× σ̃j(σ
l
j). Finally,

we obtain a full rational conjectural system and we can write that:

∃σ̃j ∈ Σj , ∃Cij ∈ Rij , such that ∀σi ∈ Σi, if we set:

σ∗
j with σ∗

j (sj) ≡ Cij (Rσi
, sj) then we have:

V ǫ
i (si, σj , σ

∗
j ) ≥ V ǫ

i (σi, σj, σ
∗
j )

�

Now, we can state the main result of this section, the characterization of root

undominance by local ǫ-rationality:

Theorem 5. Under Assumption R, a strategy si ∈ Si is locally ǫ-rational when ǫ → 0+

if and only if it is root undominated.

Proof. Assume Equation (1) for si and by contrapositive that si is root dominated.

Therefore ∃σ′′
i ∈ Σi such that ∀σj ∈ Σj , Ui(σ

′′
i , σj) ≥ Ui(si, σj) (RD1′), and ∀σ∗

j ∈

b(Rσ′′

i
), Ui(σ

′′
i , σ

∗
j ) > Ui(si, σ

∗
j ) (RD2′). Then, clearly:

∀ǫ > 0, ∀σj ∈ Σj , ∀σ
∗
j ⊂ b(Rσ′′

i
)

V ǫ
i (σ

′′
i , σ̃j , σ

∗
j ) > V ǫ

i (si, σ̃j , σ
∗
j )
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It is an immediate contradiction with Equation (1). By Lemma 8, si is not locally

ǫ-rational.

Now assume that si is root undominated. Then, there is no σi ∈ Σi such that both

∀σj ∈ Σj , Ui(σi, σj) ≥ Ui(si, σj) (RD1′) and ∀σ∗
j ⊂ b(Rσi

), Ui(σi, σ
∗
j ) > Ui(si, σ

∗
j )

(RD2′). Then, for all σi where Equation (RD1′) is not respected, ∃σj such that ∀σ∗
j ∈

b(Rσi
), V ǫ

i (si, σj , σ
∗
j ) ≥ V ǫ

i (σi, σj , σ
∗
j ) when ǫ → 0+. As well, for all σi where Equa-

tion (RD2′) is not respected, ∃σ∗
j ∈ b(Rσi

) such that V ǫ
i (si, σ

∗
j , σ

∗
j ) ≥ V ǫ

i (σi, σ
∗
j , σ

∗
j ).

Thus, we can say that ∀σi ∈ Σi, ∃σj ∈ Σj , ∃σ
∗
j ∈ b(Rσi

) such that:

V ǫ
i (si, σj , σ

∗
j ) ≥ V ǫ

i (σi, σj, σ
∗
j )

Again, we can use the separating hyperplane theorem to show there is in fact a

σj ∈ Σj such that ∀σi ∈ Σi, ∃σ
∗
j ∈ b(Rσi

) such that:

V ǫ
i (si, σj , σ

∗
j ) ≥ V ǫ

i (σi, σj, σ
∗
j ) (1)

By Lemma 8, si is locally ǫ-rational.

�

Remark that the expression ǫ → 0+ implies that for a given game, ∃ǭ > 0 such

that ∀ǫ < ǭ, there is equivalence between root undominance and local ǫ-rationality.

8.2 Other notions of rationality

In this section we introduce different but close notions of rationality with respect to

the one introduced in the previous subsection. It will help us to understand what

local ǫ-rationality is and is not. As well, it will be useful in the following subsections.

We distinguish local ǫ-rationality from global ǫ-rationality and self-local ǫ-rationality.

Global ǫ-rationality induces the belief that the strategy support of the strategy actually

played is observed by the opponent with probability ǫ. Instead, self-local ǫ-rationality

is such that i believes that j observes the strategy support of the reference strategy. We

can summarize these differences in Table 2. Two main differences appear: first, what

the agent conjectures his opponent may observe if he detects the agent’s thoughts.

Second, which kind of utility is maximized for each rationality concept. Self-local

ǫ-rationality is an ex post concept because once the opponent believes the agent is

committed to a given strategy, the agent can still decide to move ex post. By contrast,

the global concept is ex ante since the strategy since once the agent is committed to

an action, he cannot move. Finally, local ǫ-rationality correspond to a projected utility
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Rationality Type of Utility Maximization Observed Strategy

Global Ex-Ante (Conjectural Variation) Played Strategy

Self-local Ex-Post Reference Strategy

Local Projected Targeted Strategy

Table 2: Rationalities

maximization. That is, even if the agent might play his reference strategy, testing it

against other strategies induces beliefs such that this reference strategy was not avail-

able anymore. Alternatively, we can remark that our three notions of rationality can

be interpreted and distinguished with the conjectures about the opponent’s speed of

adjustment. Self-local rationality corresponds to the case where the agent conjectures

that his opponent his stickier and is not able to adjust his strategies. Then, oppo-

nents best respond to the reference (considered initially) strategy. Global rationality

corresponds to the case where the opponent adjusts perfectly and then always best

responds. Local rationality is such that the agent conjectures that his opponent an-

ticipates the adjustment, even if no move is finally made. That is why the opponent

only best responds to the targeted strategy.

Now, we define our two additional concepts:

Definition 17. A strategy si ∈ Si is globally ǫ-rational if and only if:

∃σj ∈ Σj , ∃σ
∗
j ⊂ b(si), ∀σi ∈ Σi, ∃σ

∗∗
j ⊂ b(Rσi

) such that:

V ǫ
i (si, σj, σ

∗
j ) ≥ V ǫ

i (σi, σj , σ
∗∗
j )

Global rationality of si means that si may maximize the ex-ante utility of i, given

that whatever the strategy chosen by i, j reacts optimally to it with probability ǫ.

Definition 18. A strategy si ∈ Si is self-local ǫ-rational if and only if:

∃σj ∈ Σj , ∃σ
∗
j ⊂ b(si), such that ∀σi ∈ Σi,

V ǫ
i (si, σj , σ

∗
j ) ≥ V ǫ

i (σi, σj , σ
∗
j )

Self-local rationality of si is the converse of local ǫ-rationality of si in terms of

reference point. That is, when i considers the strategy si, he believes that j reacts

optimally to si with probability ǫ. The strategy is self-local rational if there is a belief

satisfying this condition such that no move increases the i’s payoff. In other words, si

may maximize i’s ex post utility given that si is the reference point to which j best

responds with probability ǫ.
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Besides, note that these three notions of rationality are obviously a refinement of

the classical one (see Definition 12) when ǫ → 0+:

Fact 1. A strategy is globally/self-locally/locally ǫ-rational when ǫ → 0+ only if it is

rational.

8.3 Links with the conjectural variation theory

Since Bowley (1924, p.38) has introduced the idea of conjectural variations, the indus-

trial organization literature has largely been fueled by this theory23 which considers

that a market situation can remain stable if the conjectures all firms have on their

opponents refrain all of them from deviating. Contrary to the Cournot approach, the

equilibrium does not emerge from a tatônnement, but is postulated ex ante. The in-

terest is to understand why competitors may not deviate from a situation far from

a Cournot equilibrium. For instance, Sweezy (1939) introduces the kinked demand

by arguing that firms react differently when they face opponents’ downward or up-

ward price moves. Nevertheless, conjectures can be insane and consequently sustain

an infinite number of conjectural variation equilibria. That is why several authors had

tried to rationalize the agents’ conjectures. Notably, they stated that the conjectured

reactions should be “optimal” in a certain sense (see for example Hahn (1978); Laitner

(1980); Ulph (1983)). Mainly, the conjecture of player i should be such that he expects

that his opponent j maximizes his utility given j’s conjectures (i.e. j anticipates the

reaction of i after his own deviation responding to i’s deviation), once he has attained

the new “statu quo”. Yet, these attempts have been showed to miss their mark. Strik-

ingly, Makowski (1987) notices two main problems with the concepts developed in the

papers cited above. The first one is that the reaction of the opponent is optimal with

respect to the new “statu quo”, and not from the initial equilibrium. In other words,

an agent does not conjecture that an opponent who faces his deviation will best re-

spond to the deviation, simply that once he has moved to the new equilibrium, he does

not wish to move (but the move is not rationalized). Alternatively, Makowski (1987)

proposes to consider this type of conjecture with best responses to the deviation with

the notion of only slightly more rational, rational conjecture equilibrium or SMR-RCE.

However, he points out himself another flaw: conjectures are not time consistent. That

is, when player i maximizes his utility, he considers his potential deviation followed by

the reaction of his opponent j. And j maximizes his utility by considering also that

his potential deviation will be followed by the reaction of his opponent i. In words of

Makowski (1987), i expects that the game ends at time t = 2 (after j’s response to his

23See e.g. Figuières et al. (2004) for a review. Besides, for a recent contribution of this theory to

public economics, see McGinty (2021).
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deviation), but conjectures as well that j expects that the game ends at time t = 3

(after i’s response to j′s response). In fact, we can simply observe that there is no

reason that the process stops at any given time. Undeniably, with SMR-RCE, i does

not consider he can deviate from the new “statu quo” he will establish by deviating a

first time (whereas he may naturally want to deviate if he has a better response to the

new “statu quo”). This criticism might seem severe, since many concepts24 assume

an end in the reasoning process when a deviation is tested. However, this criticism

generally vanishes when the agents react by playing best responses, ending de facto the

reasoning process of the deviator once an equilibrium is reached (if it exists of course).

If each reaction is conjecture dependent, the next reaction is conjecture dependent as

well. If a reaction is not based on arbitrary conjectures, but solely on optimality, then

the reasoning process may terminate immediately.

Clearly, the beliefs assumed under global ǫ-rationality have the flavor of an “ǫ-

rational conjectural variation”. The previous discussion shows the trouble with two

players “behaving in the same way”25. That is, if the deviator i believes that j will

react optimally, there could be a difficulty if j believed that i will best respond in turn.

This problem is technically solved when ǫ converges to 0, since it becomes obvious that

i should not move (ex-ante) in reaction to the conjectured response of j which can

only occur with a small probability. The meaning of such a theory when ǫ moves away

from zero is an open question. We attempt to give some answers in Appendix J.

Before this, how to situate local ǫ-rationality in this framework? Local ǫ-rationality

seems to be the converse of a ǫ-rational conjectural variation theory. ǫ-Rational con-

jectural variation could be stated (partially) as follows: if player i deviates, j will react

optimally with probability ǫ. Now, local ǫ-rationality states that: whether player i de-

viates or not, j will react optimally to the deviation with probability ǫ. Thus, why

would j reacts to a deviation that may not appear? Why would it be more reasonable?

We attempt to answer these questions in the next subsections.

8.4 Observability of actions

Hamilton and Slutsky (1990) consider a duopoly where firms can choose the timing

of their action before playing the actual game. That is, a firm can decide to move

at the first period. In this case, if the competitor does not move first as well, the

game is a Stackelberg duopoly (i.e. the follower observes the action at the first pe-

24Simply, think of the ones introduced in this paper and other as the intuitive criterion of Cho and

Kreps (1987) (see our discussion below in Section 8.5).
25Assuming asymmetry seems justifiable since the deviatior decides alone to deviate and then,

introduce asymmetry de facto.
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riod). Otherwise, the game is simultaneous (e.g., it becomes a Cournot game if the

considered variable is quantity). Several types of equilibria appear according to the

parameters and the considered variable: either equilibria with a leader and a follower

or simultaneous equilibria. In the second configuration, there are cases where being a

leader is suboptimal, and both firms wait the second period to move, and by contrast,

cases where being a follower is suboptimal, and both firms plays at the first period.

Let us focus on the latter case, the most classical one.

In this context, the idea of global ǫ-rationality can be thought in the following way.

Even if, at the equilibrium, firms play simultaneously at the first period, one firm may

tremble26 and become a follower. Then, if a firm has several Cournot strategies, it will

choose the one that maximizes its payoff taking into account that it might be a leader

with probability ǫ. Therefore, global ǫ-rationality can be thought as a trembling-hand

refinement, motivated by the ex-post rationality of the trembling agent. The link

with local ǫ-rationality appears when the situation is more constrained: assume an

incumbent with a given strategy. However, this incumbent fears an entry. Besides,

it has another strategy that is strictly better than his current strategy if a potential

entrant best responds to this deviation and is equivalent otherwise. It is clear that this

deviation can be anticipated by the entrant, making the deviation of the incumbent

perfectly rational. It is what Hamilton and Slutsky (1990) may mean when they state:

Of course, if the existing firms had sufficient postentry flexibility, then en-

trants will not react to current choices but to their perception of postentry

behavior.

This example shows in a simple way how a firm can be incentivized to change its

strategy if the entrant’s perception about the actual situation is accurate enough. Here,

the entrant reacts to the postentry behavior. Therefore, the “observed” strategy is not

the reference strategy but the targeted one, since it is what the entrant anticipates. It

does correspond to our local ǫ-rationality concept.

8.5 Further ideas

Two remarks have to be made. The first one is that among the three notions of

rationality we have developed so far, only one leads to an order independent iterated

elimination procedure (the proof of this observation is left to the reader but we give

some elements of understanding below). How can we explain this lack of consistency?

26In the context of a duopoly, the idea of tremble seems quite natural since real life contingencies

often delay decision making processes.
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With respect to signaling games, self-local rationality seems to be linked to the intu-

itive criterion of Cho and Kreps (1987). Indeed, under self-local rationality, a strategy

is not played when it is not a best response if a best response to this strategy is played

with probability ǫ. Then, the reference point is the potentially dominated strategy.

In the intuitive criterion, the reference point is the tested equilibrium. Broadly, in a

signaling game with two types of agents (the senders) and a principal (the receiver),

an equilibrium fails the intuitive test with respect to a deviation if (i) this deviation

from the initial equilibrium is never profitable for one type, and if (ii) the other type

prefers the new equilibrium when the receiver best responds to the deviation. Let us be

clear: this criterion might be said global in a sense since we first look at an equilibrium

(where everybody best responds) and check if a deviation is profitable (where only the

receiver best responds). Nevertheless, what interests us in this story is the response

of the other type. Indeed, the intuitive criterion forgets the optimal reaction of the

type for who the deviation is never profitable. That is, the intuitive criterion assumes

this type still best responds to the initial equilibrium whereas the deviation leads to

another equilibrium. In this sense, the intuitive criterion is self-local. This point had

notably been made by Mailath (1988) and led to the notion of undefeated equilibrium

in Mailath et al. (1993). In fact, this logic is reminiscent of the E2 equilibrium in

Wilson (1977). Loosely speaking, an equilibrium is said E2 if there is no profitable

deviation for a player in the following sense: after the opponents’ “optimal” reaction27

to the deviation, the deviation is still profitable, with respect to the initial equilibrium.

Since all actions were optimal at the initial equilibrium, and are still optimal when

the deviation is tested, we can see the E2 equilibrium as a global concept, while the

intuitive criterion is well self-local.

In the pure strategy case, global rationality can be stated as follows: player i

never wants to play strategy si ∈ Si once j plays best response to i’s strategies with

probability ǫ and i can find another strategy that yields strictly more. However, if the

strategy si is deemed unplayable, the reason of the elimination may vanish immediately

since i requires a best response to si to be played28. This reasoning similar with self-

local rationality. When a player checks whether he should eliminate a strategy, he

should not fear losing the payoff if he plays the eliminated strategy, but rather see

what he gets if he plays the eliminating strategy. In a word, the situation at the

deviation (i.e. by playing the eliminating strategy) should be checked, not the others.

In our view, the agent should test a deviation such that this deviation works29 and not

27The paper is applied to insurances: thus, the “optimal” reaction is to withdraw insurance policies

which reward a negative profit.
28This directly shows why an iterated elimination procedure based on global and self-local ratio-

nality would be order dependent: these rationality concepts lack hereditariness.
29We mean by works that the agent gets a strictly higher payoff by deviating rather than playing

the reference strategy.
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such that the reference point still exists. Indeed, if a deviation is tested and works,

it is not necessary anymore to keep in mind the reference point30. Finally, when an

agent tests a deviation, he should anticipate that his opponent will also test it and

react accordingly, whatever the true action of the agent.

The second remark is that IERDS is not the only order independent procedure.

Additionally, it might not be the only procedure whose dominance is grounded on the

existence of a set of profiles which will survive each process (not all the profiles survive

but at least one profile does and the set does not expand, letting the required property

on the set untouched by each process). In the spirit of RBEU of Cubitt and Sugden

(2011), one may think for example that payoff domination on all the profiles where

an opponent plays a dominant strategy (if it exists) will survive to any reasonable

elimination procedure, and it would be enough. Then, our condition RD2 could be

weakened by adding this possibility. This question is still open and might be the object

of further research.

9 Conclusion

In this paper, we introduce a new dominance relation named root dominance between

weak and strict dominances. It requires weak dominance and an additional condition

based on the Best Response Set to the dominating strategy. We associate to this

dominance relation an iterated elimination procedure named IERDS. The main result of

this paper is that IERDS is an order independent procedure in finite games and refines

IESDS. Additionally, we show that IERDS does not face the inconsistency named

mutability. Mutability concerns especially IEWDS but also other existing elimination

procedure. In a word, mutability means that an eliminated (and thus dominated)

strategy in a process is finally not dominated at the end of the process. Finally, we

introduce new rationality concepts such that our rational strategies correspond to

root undominated strategies. Furthermore, we establish a link between our rationality

concepts and a rational kind of conjectural variations theory, a framework well-known

in industrial organization literature and public economics.

References

Apt, K. R. (2005). Order Independence and Rationalizability. In Proceedings of the

Tenth Conference on the Theoretical Aspects of Rationality and Knowledge, pages

22–38.

30This point is reminiscent of the idea of memorylessness developed in Patty (2021).

32



Apt, K. R. (2011). Direct Proofs of Order Independence. Economics Bulletin,

31(1):106–115.

Asheim, G. B. and Dufwenberg, M. (2003). Admissibility and Common Belief. Games

and Economic Behavior, 42(2):208–234.

Baliga, S. and Morris, S. (2002). Co-ordination, Spillovers, and Cheap Talk. Journal

of Economic Theory, 105(2):450–468.

Barelli, P. and Galanis, S. (2013). Admissibility and Event-Rationality. Games and

Economic Behavior, 77(1):21–40.

Bernheim, B. D. (1984). Rationalizable Strategic Behavior. Econometrica, 52(4):1007–

1028.

Blume, L., Brandenburger, A., and Dekel, E. (1991). Lexicographic Probabilities and

Choice Under Uncertainty. Econometrica, 59(1):61–79.

Bonanno, G. and Tsakas, E. (2018). Common Belief of Weak-Dominance Rationality

in Strategic-Form Games: A Qualitative Analysis. Games and Economic Behavior,

112:231–241.

Börgers, T. (1993). Pure Strategy Dominance. Econometrica, 61(2):423–430.

Börgers, T. (1994). Weak Dominance and Approximate Common Knowledge. Journal

of Economic Theory, 64(1):265–276.

Bowley, A. (1924). The Mathematical Groundwork of Economics. Oxford University

Press.

Brandenburger, A. (1992). Lexicographic Probabilities and Iterated Admissibility. In

Dasgupta, P., Gale, D., Hart, O. D., and Maskin, E. S., editors, Economic Analysis

of Markets and Games: Essays in Honor of Frank Hahn, pages 282–290. Cambridge,

MA: MIT Press.

Brandenburger, A., Friedenberg, A., and Keisler, H. J. (2008). Admissibility in Games.

Econometrica, 76(2):307–352.

Carlsson, H. and van Damme, E. (1993). Global Games and Equilibrium Selection.

Econometrica, 61(5):989–1018.

Cho, I.-K. and Kreps, D. M. (1987). Signaling Games and Stable Equilibria. Quarterly

Journal of Economics, 116(2):1133–1165.

Cubitt, R. P. and Sugden, R. (2011). The Reasoning-Based Expected Utility Proce-

dure. Games and Economic Behavior, 71(2):328–338.

33



Dekel, E. and Fudenberg, D. (1990). Rational Behavior with Payoff Uncertainty.

Journal of Economic Theory, 52(2):243–267.

Dufwenberg, M. and Stegeman, M. (2002). Existence and Uniqueness of Maximal

Reductions under Iterated Strict Dominance. Econometrica, 70(5):2007–2023.

Farrell, J. and Rabin, M. (1996). Cheap Talk. Journal of Economic Perspectives,

10(3):103–118.

Figuières, C., Jean-Marie, A., Quérou, N., and Tidball, M. (2004). Theory of Conjec-

tural Variations, volume 2.

Fudenberg, D., Kreps, D. M., and Levine, D. K. (1988). On the Robustness of Equi-

librium Refinements. Journal of Economic Theory, 44(2):354–380.

Gilboa, I., Kalai, E., and Zemel, E. (1990). On the Order of Eliminating Dominated

Strategies. Operations Research Letters, 9(2):85–89.

Hahn, F. (1978). On Non-Walrasian Equilibria. Review of Economic Studies, 45(1):1–

17.

Hamilton, J. and Slutsky, S. (1990). Endogenous timing in duopoly games: Stackelberg

or Cournot equilibria. Games and Economic Behavior, 2(1):29–46.

Hamilton, J. and Slutsky, S. (2005). Equilibrium with Strategy-Dependent Trembles.

International Journal of Game Theory, 33(4):461–465.

Hillas, J. and Samet, D. (2020). Dominance Rationality: A Unified Approach. Games

and Economic Behavior, 119:189–196.

Kahneman, D. and Tversky, A. (1979). Prospect Theory: An Analysis of Decision

under Risk. Econometrica, 47(2):263–292.

Kohlberg, E. and Mertens, J.-F. (1986). On the Strategic Stability of Equilibria.

Econometrica, 54(5):1003–1037.

Laitner, J. (1980). “Rational” Duopoly Equilibria. Quarterly Journal of Economics,

95(4):641–662.

Luo, X., Qian, X., and Qu, C. (2020). Iterated Elimination Procedures. Economic

Theory, 70(2):437–465.

Mailath, G. J. (1988). A Reformulation of a Criticism of the Intuitive Criterion and

Forward Induction.

Mailath, G. J., Okuno-Fujiwara, M., and Postlewaite, A. (1993). Belief-Based Refine-

ments in Signalling Games. Journal of Economic Theory, 60(2):241–276.

34



Makowski, L. (1987). Are ‘Rational Conjectures’ Rational? Journal of Industrial

Economics, 36(1):35–47.

Marx, L. M. and Swinkels, J. M. (1997). Order Independence for Iterated Weak

Dominance. Games and Economic Behavior, 18(2):219–245.

McGinty, M. (2021). Rational conjectures and evolutionary beliefs in public goods

games. Journal of Public Economic Theory, forthcoming.

Moulin, H. (1979). Dominance Solvable Voting Schemes. Econometrica, 47(6):1337–

1351.

Moulin, H. (1986). Game Theory for the Social Sciences. NYU Press.

Patty, M. (2021). Top Dominance.

Pearce, D. G. (1984). Rationalizable Strategic Behavior and the Problem of Perfection.

Econometrica, 52(4):1029–1050.

Rubinstein, A. (1991). Comments on the Interpretation of Game Theory. Economet-

rica, 59(4):909–924.

Samuelson, L. (1992). Dominated Strategies and Common Knowledge. Games and

Economic Behavior, 4(2):284–313.

Selten, R. (1975). Reexamination of the Perfectness Concept for Equilibrium Points

in Extensive Games. International Journal of Game Theory, 4(1):25–55.

Stahl, D. O. (1995). Lexicographic Rationalizability and Iterated Admissibility. Eco-

nomics Letters, 47(2):155–159.

Stalnaker, R. (1994). On the Evaluation of Solution Concepts. Theory and Decision,

37(1):49–73.

Sweezy, P. M. (1939). Demand under Conditions of Oligopoly. Journal of Political

Economy, 47(4):568–573.

Ulph, D. (1983). Rational Conjectures in the Theory of Oligopoly. International

Journal of Industrial Organization, 1:131–154.

Wilson, C. (1977). A Model of Insurance Markets with Incomplete Information. Jour-

nal of Economic Theory, 16(2):167–207.

35



A Omitted proofs

Theorem 2. IERDS is immutable in finite games.

Proof. Assume there is a strategy s′i ∈ Si eliminated through IERDS. Assume a given

process of IERDS and the sequence of games associated {Γλ}λ≤Λ. Consider the game

formed by ΓΛ and the strategy s′i, i.e. the game Γ′ (with the same players and utilities

as ΓΛ) and the strategy set SΛ ∪ s′i. We reason by induction.

Stage 1: Assume s′i has been eliminated by s′′i at step Λ − 1. Suppose also by

contradiction that s′i is not root dominated in Γ′. By Lemma 2, s′′i ∈ ΓΛ ⊂ Γ′. We

repeat the same arguments as in the proof of Lemma 4: comparing s′′i and s′i, it can

be verified that RD1 is still respected. By Lemma 3, we know that bΛ(s′′i ) ⊆ b
Λ−1(s′′i ).

Additionally, bΛ(s′′i ) cannot be empty by Lemma 1. Therefore, RD2 is still satisfied

and s′i is not root dominated in Γ′.

Stage µ+1: Now assume the property that a root dominated strategy s′i at Λ−µ is

root dominated in Γ′ for a given µ ∈ [[2,Λ− 1]] is true. Let us show it is true for µ+1.

Assume the sequence of games {Γλ}λ≤Λ is such that the considered s′i is eliminated at

Λ− (µ+ 1).

One can construct a sequence of games {Γ̃λ}λ≤Λ̃ identical to the previous one until

step Λ− (µ+ 1), but s′i is not eliminated at Λ− (µ+ 1). By Lemma 5, s′i is still root

dominated in the latter sequence {Γ̃λ}λ≤Λ̃ at the step Λ− µ.

There are two cases: either (i) the strategy s′′i which eliminates s′i in the first se-

quence {Γλ}λ≤Λ is in SΛ(= S̃Λ̃ by Theorem 1), and thus is never eliminated; or (ii)

the strategy s′′i is eliminated at a further step of the sequence {Γλ}λ≤Λ.

In the former case (i), it is straightforward to show that s′i is root dominated in Γ′

by repeating the arguments used in the first stage of our induction reasoning.

In the latter case (ii), we know by the induction hypothesis that s′′i is root domi-

nated in the game Γ′′ (where Γ′′ is analogous to Γ′ with the same players and utilities

as ΓΛ and the strategy set SΛ ∪ s′′i ). Clearly, if s
′′
i is root dominated by a strategy s′′′i
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in Γ′′, since s′′i always very weakly dominates s′i, s
′
i is also root dominated by s′′′i in Γ′

(since Γ′ and Γ′′ are the same games but either s′i or s
′′
i is added to ΓΛ = Γ̃Λ̃).

Conclusion: We have shown that a strategy eliminated at Λ − (µ + 1) is still

virtually root dominated at the end of the sequence. Thus, by induction, it is true

for each µ ∈ [[2,Λ]]. Since we did not need any assumption on the process used to

construct our initial sequence, this result is true for any process. �

B Additional results

The next result states that no finite game becomes empty through IERDS:

Fact 2. S0 6= ∅ ⇒ ∀{Γλ}λ≤Λ, S
Λ 6= ∅.

Proof. By Proposition 1 and by the finiteness of the games, it is clear that for each

strategy set, there is at least one undominated strategy that can never been eliminated.

�

IERDS satisifies the Individual Independence of the Irrelevant Alternatives (IIIA)

as formulated by Gilboa et al. (1990), i.e. the addition of one i’s strategy does not

affect the dominance relation between i’s strategies:

Proposition 3. Assume Γ and Γ′ two games such that N = N ′, S−i = S ′
−i, U = U ′,

and S ′
i = Si ∪ s∗i .Then:

s′′i ≻ s′i in Γ ⇒ s′′i ≻ s′i in Γ′.

Proof. Adding s∗i does not affect the payoff of i when playing s′i and s′′i . As well it

does not affect the profiles in b(s′′i ). Thus, if all conditions of Definition 4 are checked

in Γ, it is also the case in Γ′. �

Nevertheless, we cannot use the main result of Gilboa et al. (1990) that states the

order independence of hereditary dominance relations which are partial orders and

respect IIIA. Indeed, root dominance is not hereditary in their sense:

Definition 19. Assume Γ and Γ′ such that N = N ′, U = U ′, S ′ ⊂ S. If S ⊂ S ′, then

the well defined dominance relation ≻ is said hereditary if:

∀s′′i , s
′
i ∈ Si, s′′i ≻ s′i in Γ′ ⇒ s′′i ≻ s′i in Γ′.
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The next example shows why ≻ is not hereditary. We show in green the Nash

equilibria. In the game below, IERDS eliminates B, then K1 and finally L:

k’s Strategy

j’s Strategy

i L R

T (3, 1, 1) (3, 0, 1)

B (2, 1, 1) (3, 0, 1)

K1

j’s Strategy

i L R

T (3, 0, 2) (3, 1, 2)

B (2, 0, 0) (2, 0, 0)

K2

−→

k

j

i R

T (3, 1, 2)

K2

Table 3: Games where hereditariness fails

However if we arbitrarily suppress the strategy L of the game, then no elimination

can be made with IETDS. Therefore, root dominance is not hereditary, since B is not

root dominated by T in the following “subgame”:

k’s Strategy

j

i R

T (3, 0, 1)

B (3, 0, 1)

K1

j

i R

T (3, 1, 2)

B (2, 0, 0)

K2

Table 4: Subset of the previous Game with no Possible Elimination

C Best reply set

Now we show with the next example (we show in green the Nash equilibria) why the

definition of the Best Reply Set requires to consider all profiles where (at least) one

opponent best responds and not only where all the opponents mutually best respond

(beyond the obvious problem of existence with more than two players):
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k’s Strategy

j’s Strategy

i L C R

T (3, 3, 1) (3, 3, 1) (3, 2, 1)

M (3, 2, 1) (3, 1, 0) (3, 1, 0)

B (3, 2, 1) (3, 1, 0) (3, 1, 2)

K1

j’s Strategy

i L C R

T (3, 3, 1) (3, 3, 1) (3, 2, 2)

M (3, 0, 2) (3, 2, 0) (4, 2, 1)

B (3, 0, 2) (3, 2, 0) (3, 2, 1)

K2

j’s Strategy

i L C R

T (3, 3, 1) (3, 3, 1) (3, 2, 1)

M (3, 2, 0) (3, 1, 2) (3, 0, 0)

B (3, 2, 0) (3, 1, 2) (3, 0, 0)

K3

Table 5: Best Reply Set with a Three Players Game

In this game, if the Best Reply Set definition was modified, M would root dominate

B and T . Indeed, the only profile where j and k mutually best respond to M is

(M,R,K2). At this profile M is strictly better than the two other strategies. Since M

weakly dominates the two other strategies, it would be done. However, it can be easily

seen that C would also root dominate R (all mutual best responses to C are indeed

parts of the Nash equilibria). Then the order of elimination would matter. What is

important here is that at (M,C,K2), k strictly wants to deviate, making the profile

unchecked with a modified version of the Best Reply Set.

D Are inadmissible strategies playable?

Despite the inconsistencies of IEWDS, one may still assert that weakly dominated

strategies should not be played. For instance, Kohlberg and Mertens (1986, p. 1014)

justify admissibility as a criterion of strategic stability with the following reasoning:

assume a pure strategy two-player game with player i having one strategy s′′i which

weakly dominates s′i and additionally, such that if i is indifferent between s′′i and s′i,

j is also indifferent at these profiles (it is the TDI condition of Marx and Swinkels

(1997)). Now, the game has the next extensive form (see Figure 9): first, i is asked to

choose between (s′i, s
′′
i ) and all of his other strategies. Second, j chooses his strategy.

Finally, there is a third stage only if i has chosen (s′i, s
′′
i ) at the first step and if s′i and

s′′i do not give the same payoffs (i.e. if j has chosen a strategy among the strategies �

where both players are not indifferent with respect to the choice of i between s′i and

s′′i ). Kohlberg and Mertens (1986) claim that in this form of game, s′i is never played.

It is true. However, Kohlberg and Mertens (1986) do not consider the games with

payoffs such that s′′i is never played either. Let us see the behavior of j if i has chosen
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player i

player j

player i

s′i s′′i

strategies � strategies ∼

other strategies (s′i, s
′′
i )

Figure 9: Extensive-Form Game: s′′i Weakly Dominates s′i but might Never be Played

in the third stage

the couple (s′i, s
′′
i ) rather than another strategy at the first stage. Then, j necessarily

plays a best response to s′i or s′′i . Assume j chooses a best response s∗j to s′i. Then,

either i is not indifferent and will necessarily choose s′′i (since s′′i weakly dominates s′i,

if i is not indifferent, he strictly prefers s′′i ), making the choice of j suboptimal if it

is not a best response to s′′i too, or i is indifferent. In this latter case, by assumption

(the TDI condition), j is also indifferent. However, if s∗j is not a best response to

s′′i , then j could have obtained a strictly higher payoff by deviating towards a best

response to s′′i . Therefore, in this part of the game, j always plays a best response to

s′′i . Then, i may play s′′i at the third stage only if players are not indifferent at (at

least) one profile where j best responds to s′′i . If there is (at least) one best response

of j to s′′i such that i and j are indifferent between s′i and s′′i , then s′′i might be never

played. The idea of Kohlberg and Mertens (1986) is that a strategy is inadmissible if

it is never played in such an extensive-form game. Nevertheless, this criterion cannot

characterize inadmissibility since an admissible strategy might never be played either

(if j always plays a strategy in ∼), according to the considered game. We claim that

one possibility is to choose a more cautious criterion: s′i is dominated by s′′i if and only

if s′′i is always played in this part of the game. Precisely, we should require that s′′i is

played with probability 1 in the third stage when i chooses the couple (s′i, s
′′
i ) at the

first stage. In this case, s′′i should strictly payoff dominate s′i where j best responds to

s′′i . It is exactly our second condition of dominance. Note that the reasoning we have

just made does require weak dominance, like our notion of dominance does.

Besides, remark that root dominance differs from the notion of nice weak dominance

introduced by Marx and Swinkels (1997) since nice weak dominance is equivalent to

weak dominance in games where the TDI condition is respected. Thus, in all the

games we have considered, s′i is nicely weakly dominated by s′′i . One can see why the

iterated elimination of nicely weakly dominated strategies is payoff order independent

in such games with the two following examples:

40



j’s Strategy

i’s Strategy L R

T (2,2) (3,1)

B (2,2) (2, 1)

−→
IEWDS

j’s Strat.

i’s Strat. L

T (2,2)

B (2,2)

or

j’s Strat.

i’s Strat. L

T (2,2)

j’s Strategy

i’s Strategy L R

T (2,2) (3,3)

B (2,2) (2,3)

−→
IEWDS

j’s Strat.

i’s Strat. R

T (3,3)

Figure 10: IEWDS applied to Games with the TDI Condition

In the top game, j best responds to T by playing L. At this profile, i is indifferent

between T and B. With respect to our previous remarks, it might be problematic.

Indeed, here, the order of deletion of IEWDS matters: the outcome of IEWDS is

either (T, L) or (∆(T,B), L). Nevertheless, thanks to the TDI condition, it does not

affect the payoffs. Again, in this paper, we consider such an outcome of IEWDS as

an example of order dependence. Now, in the bottom game, j best responds to T by

playing R. There, i is not indifferent, and the order does not matter, the outcome of

IEWDS always being (T,R). One can remark that the TDI condition does not matter

either in this game. Indeed, whatever the payoff of j at the profile (B,L), IEWDS

would still be order independent. Naturally, we depart from the notion of nice weak

dominance since root dominance requires payoff dominance at the profiles where j best

responds to T .

E Weak dominance in 2× 2 games

Assume the following general form for a 2× 2 game where T weakly dominates B (i.e.

a > c):
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j’s Strategy

i’s Strategy L R

T (a, α) (a, β)

B (c, γ) (a, δ)

Table 6: Game with Weak Dominance

With respect to the value of α, β, γ and δ, there are 9 possible configurations that

we gather in subsets according to their properties. The three configurations (i) where

α > β are order independent and immutable. The special configuration (i′) where α =

β and γ = δ is order independent and immutable as well. The configurations (ii) with

α < β and γ > δ is order independent but is mutable31. Finally, other configurations

(iii) are order dependent and mutable (those either with α = β and γ 6= δ or α < β and

γ ≤ δ). Configurations (i) correspond to cases where T root dominates B. All other

configurations are such that (T,R) ∈ b(T ), and therefore T does not root dominate

B. Note that (ii) differs from (iii) also because j does not have (weakly) dominated

strategy in (ii). In this game, except for configuration (i′), both root dominance

solvability and consistency of IEWDS correspond to cases where the selected Nash

equilibrium is strict (but not necessarily Pareto-dominant), i.e. no player has a payoff-

equivalent unilateral deviation. Other cases are such that no Nash equilibrium is

strict. The case (i′) is such that IERDS eliminates no strategy. In contrast, IEWDS

eliminates B and that is all. Again, the configuration (i′) is special. However, it shows

that IERDS fails to delete some strategies which are virtually dominated in the IEWDS

outcome. Thus, IERDS is not the “maximal” immutable elimination procedure.

j’s Strategy

i’s Strategy L R

T (a, α) (a, α)

B (c, α) (a, α)

Table 7: Game with configuration (i′): IEWDS eliminates B

31Note that it can be compared to Samuelson (1992, Example 8) which shows that common knowl-

edge of admissibility may not exist. Note that if in addition to these specifications, we assume that

β = δ, this game respects the transference of decisionmaker indifference (TDI) condition of Marx

and Swinkels (1997) which ensures the outcome order independence of IEWDS in finite games (i.e.

any order of elimination leads to the same payoffs). Therefore, it shows that nice weak dominance

(which is equivalent to weak dominance in the class of finite TDI games) may exhibit mutability.
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F Pareto dominance and pre-play communication

Note that our procedure does not lead to the selection of the Pareto dominant equi-

librium (we show in green the Nash equilibria). Even if the Pareto dominant strictly

dominates another equilibrium, the latter may still be selected instead as it is shown

with this example:

j’s Strategy

i’s Strategy L R

T (2, 1) (1, 2)

B (2, 3) (0, 0)

Table 8: Game with a Pareto Dominated Unique Prediction

However, if we define a strict Nash equilibrium as an equilibrium where each player

best responds to the profile and this best response is unique (i.e. no strategy is payoff

equivalent at this profile), we can easily show that IERDS never eliminates this kind

of equilibrium:

Fact 3. IERDS does not eliminate strict Nash equilibria.

The proof is immediate since if a profile is a strict Nash equilibrium, then all strate-

gies of the profile cannot be iteratively weakly dominated. Note that IEWDS does not

eliminate strict Nash equilibria by the same argument.

Remark that if we invoke the notion of self signaling32, (T,R) is the only equilib-

rium such that both agents play a self signaling action. Briefly, in a two-players game

with pre-play communication, an action is said self signaling if the action the sender

announces is a strict best response if his opponent plays a best response to this action;

if he plays another action, he strictly prefers that the opponent plays another strategy.

Therefore there should not be an incentive to deviate for the sender once he thinks his

opponent trusts him33. It is not surprising that a root dominating strategy enables a

32Self signaling is described in Farrell and Rabin (1996) for pre-play communication, see Baliga

and Morris (2002) for formal definitions
33In other words, if the sender announces something that he always wants to be believed (whatever

it is true or false), his commitment is weak, he cannot self signal. Here, conditions to have T and R

self signaling are: Ui(T,R) > Ui(B,R) and Ui(B,R) < Ui(B,L) for agent i (conditionally to j best

responding at (T,R)) and symmetrically Uj(T,R) > Uj(T, L) and Uj(T, L) < Uj(B,L) for agent i

(conditionally to i best responding at (T,R)).
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strongly believed commitment since it is an undominated strategy34. At (B,L), only

j can self signal, while i cannot even self commit (self commitment requires only that

the action announced is a strict best response if the opponent plays a best response).

Moreover, even if (B,L) is the Pareto dominant profile, action L is not a Stackelberg

action (i.e. the unique preferred action if the opponent always plays a best response)

because T is also a best response to L, and at (T, L), j wants to deviate.

G Proof of mixed IERDS order independence re-

sult

First, it is obvious that Lemma 1 still applies. Now, we state that mixed root domi-

nance forms also a strict partial order:

Proposition 4. Mixed root dominance is a strict partial order: it is a binary relation

such that irreflexivity, asymmetry and transitivity hold.

The proof is analogous to the pure strategy case:

Proof. Root dominance is irreflexive: by Lemma 1, ∀σi,∈ Σi b(Rσi
) 6= ∅, and it is not

possible to have Ui(σi, σ−i) > Ui(σi, σ−i) for any profile σ−i ∈ Σ−i. Then, RD2′ cannot

be respected. Root dominance is transitive: assume σ′′
i ≻σ′

i and σ′′′
i ≻σ′′

i . Here, we

have to prove that σ′′′
i ≻σ′

i. First, it is straightforward that RD1′ is respected. Sec-

ond, since σ′′′
i ≻σ′′

i , we know that Ui(σ
′′′
i , σ−i) > Ui(σ

′′
i , σ−i) for each strategy profile

σ−i contained in b(Rσ′′′

i
). Since σ′′

i ≻σ′
i, Ui(σ

′′
i , σ−i) ≥ Ui(σ

′
i, σ−i) for each strategy

profile σ−i in Σ−i, and thus for each strategy profile σ−i contained in b(Rσ′′′

i
). There-

fore, Ui(σ
′′′
i , σ−i) > Ui(σ

′′
i , σ−i) ≥ Ui(σ

′
i, σ−i) for each strategy profile σ−i contained in

b(Rσ′′′

i
) and RD2′ is respected. Finally, irreflexivity and transitivity together imply

asymmetry. �

Lemma 9. If s′i ∈ Si is root dominated, there is (at least) one strategy σ′′
i ∈ Σi that

may eliminate it, i.e. a strategy σ′′
i whose no strategy in the support is root dominated

by an other strategy and root dominates s′i.

Proof. Since the number of pure strategies is finite, the number of pure strategies

contained in all the supports containing (mixed) strategies root dominating s′i is nec-

essarily finite. Let us denote it m and denote g(s′i) the set of these strategies. Then,

34Note that if we modified the payoff of i such that i earns −1 when j plays L, there would still be

root dominance but T would not be self signaling. Then, there is obviously not equivalence between

the two concepts.

44



(at most) m− 1 of these strategies are root dominated. Otherwise, it means that the

mth strategy, named s′′i , is root dominated by an other strategy whose support contains

(at least) one pure strategy outside g(s′i). By transitivity of root dominance, it means

that the latter strategy also root dominates s′i, contradicting the fact that the num-

ber of pure strategies contained in all the supports containing (mixed) strategies root

dominating s′i is m. Thus, we have established that at least s′′i is not root dominated.

Additionally, by Lemma 7, we know that the m−1 strategies root dominated are root

dominated by strategies σ̃i ∈ Σi whose supports do not contain them. Again, by tran-

sitivity, the support of these strategies σ̃i is necessarily contained in g(s′i). Therefore,

s′′i root dominates each of these strategies: otherwise, either one of these strategies

is not root dominated and there is a contradiction, or it is dominated by a strategy

whose support is outside g(s′i), a contradiction. Finally, s′′i root dominates s′i. We can

make the same reasoning when more than one pure strategy is not root dominated

and the proof is done.

�

It is straightforward to show that b(Rσi
) never expands as we progress through the

steps of mixed IERDS thanks to the previous result. Finally, all remaining results are

written in the same until the hereditariness result, and we get the order independence

result.

H Burned money

Root dominance fails to be as predictive as IEWDS or Iterated Elimination of Choice

sets under Full Admissible consistency (IECFA) of Asheim and Dufwenberg (2003)

if we study the battle of sexes game with a burning option for one player (see for

instance Rubinstein (1991, p.920)). If payoffs are as described in the payoffs matrix of

Table 9 (we show in green the Nash equilibria), we only delete one strategy for each

agent, eliminating one Nash equilibrium. This result is not completely satisfying since

we preserve a strategy where money is burnt and the equilibrium deleted is the one

where the second agent has the maximal payoff. (BD) is root dominated by (NU).

This deletion is necessary to eliminate (RR) (by (RL)) but no further elimination is

possible.
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j’s Strategy

i’s Strat. LL LR RL RR

NU (3, 1) (3, 1) (0, 0) (0, 0)

ND (0, 0) (0, 0) (1, 3) (1, 3)

BU (2, 1) (−1, 0) (2, 1) (−1, 0)

BD (−1, 0) (0, 3) (−1, 0) (0, 3)

−→
pure IERDS

j’s Strategy

i’s Strat. LL LR RL

NU (3, 1) (3, 1) (0, 0)

ND (0, 0) (0, 0) (1, 3)

BU (2, 1) (−1, 0) (2, 1)

Table 9: Burned Money in Rubinstein (1991)

However, if we allow a mixed extension of the game, mixed strategies where BU

is more used than NU root dominate ND. Then LL root dominates RL. Finally we

end the procedure by eliminating BU , and we get the two Nash equilibria favoring i:

−→
mixed IERDS

j’s Strategy

i’s Strat. LL LR

NU (3, 1) (3, 1)

Table 10: Final outcome of Burned Money after mixed IETDS

I Additional concepts characterizing root dominance

In this part, we introduce two additional rationality concepts which can characterize

root dominance. For this purpose, we introduce two new types of games where the

perception of player j is perturbed with probability ǫ.

In the first configuration, the hesitation game, we suppose that despite having a

“reference” strategy (unobserved by the opponent), a player may alternatively consider

some strategy subsets. If so, the opponent reacts optimally (in a naive way) to this

strategy subset. Thus, the reference strategy is “tested” against such mind trembles. If

the reference strategy is not optimal when he believes that the opponent can detect this

tremble and react optimally, the tremble should be realized and, in fact the reference

strategy never played in such a game.

In the second configuration, named deviation game, the opponent observes both the

reference strategy and the strategy subset from which a potential deviation is picked.
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Closer to the spirit of Fudenberg et al. (1988), j analyses whether the deviation is

sustainable before reacting optimally. That is, we assume j plays a best response to

the deviation if and only if it the deviation is deemed credible with respect to the

reference strategy. We summarize j’s beliefs in Figure 11.

i

σr
i

strategies σj ∈ Σj

σi ∈ ∆(Ši) ⊂ Σi

j

i

σr
i

strategies σj ∈ Σj

σi ∈ ∆(Ši) ⊂ Σi

j

Figure 11: Beliefs of j if a Perturbation occurs in Hesitation (left) and Deviation

(right) Games

I.1 Hesitation games

Assume each player believes that with probability ǫ he may “hesitate”. That is, if

he has chosen a reference strategy σr
i ∈ Σi, he may think to choose other (mixed)

strategies supported by any strategy subset Ši ⊂ Si. Additionally, assume that this

thought is observable by the opponent j and that j believes that i will actually play

a strategy in ∆(Ši). At this point, i can substitute a strategy in ∆(Ši) for σ
r
i . If with

such a perturbation, σr
i does not maximize i’s utility, then σr

i should not be played.

First, we define two concepts which assume restrictions on the available strategies:

Definition 20. A restricted game Γ̂(σr
i , Ši) is a simultaneous game such that player i

chooses a strategy σi ∈ σr
i ∪∆(Ši) where Ši ⊂ Si, and such that it is common knowledge

that player j believes with probability 1 that Σi = ∆(Ši).

A restricted game Γ̂(σr
i , Ši) is a game where the strategy set is σr

i ∪ ∆(Ši) × Sj

but player j believes that the strategy set is ∆(Ši) × Σj . Now, we can define the

ǫ-hesitation game, whose name indicates that players might hesitate with probability

ǫ:

Definition 21. An ǫ-hesitation game Γ̂ǫ(σr
i , Ši) for player i and strategy σr

i is a game

where:

1. Player i chooses the strategy σi ∈ Σi, and player j chooses a strategy in Σj with

probability 1− ǫ,
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2. With probability ǫ, i and j play a restricted game Γ̂(σr
i , Ši).

That is, we assume the perception of the game by player j is restricted to ∆(Ši)×Σj

with probability ǫ. Clearly, the perception can be false since i is allowed to choose

the strategy σr
i . However, we assume that j almost guesses the thought of i with

probability ǫ, since j perceives (at least) partially where the attention of i is.

Furthermore, we can make a link with the idea of deviation and its observation.

Indeed, an ǫ-hesitation game formalizes the reasoning process of player i when:

1. The “usual” strategy of player i is σr
i ,

2. Player i thinks about a deviation to any other strategy contained in ∆(Ši),

3. Opponent j observes with probability ǫ that i is thinking to choose a strategy in

∆(Ši).

The consequence of step 3 is that i believes that j will choose a best response to

∆(Ši) with probability ǫ.

More concretely, the reasoning is the following. When i thinks about whether a

strategy σr
i is “playable”, he takes it as a reference point. Then, he wonders whether

he may want to deviate. For this purpose, he considers all strategy subsets Ši. For

each one, he believes that j will react optimally with probability ǫ. Finally, he checks

if he would want to deviate from σr
i in all cases verifying this belief. If there is a

deviation that yields strictly more, player i never chooses σr
i to avoid to pay the cost

c when facing the restricted game. One could remark that the behavior of j seems

too “naive”. In the next subsection we introduce a second kind of perturbation that

tackles this issue.

Now, we define the best response of an ǫ-hesitation game:

Definition 22. Consider an ǫ-hesitation game Γ̂ǫ(σr
i , Ši). A strategy σ∗

i ∈ σr
i ∪∆(Ši)

is a best response of the ǫ-hesitation game if:

∃σj ∈ Σj , ∃σ
∗
j ⊂ b(Ši), ∀σi ∈ σr

i ∪∆(Ši), V ǫ
i (σ

∗
i , σj , σ

∗
j ) ≥ V ǫ

i (σi, σj , σ
∗
j ) (H-BR)

Finally, we introduce the concept of ǫ-hesitation dominance which formalizes the

dominance relation when we consider the expected ǫ-perturbed utility, and such that

the dominating strategy is “observed” by the opponent:

Definition 23. A strategy si ∈ Si is ǫ-hesitation dominated by σi ∈ Σi if:

∀σj ∈ Σj , ∀σ
∗
j ⊂ b(Rσi

),

V ǫ
i (σi, σj, σ

∗
j ) > V ǫ

i (si, σj , σ
∗
j )
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In words, σi ǫ-hesitation dominates si when j reacts optimally to σi with probability

ǫ. Naturally, this concept seems similar to root dominance. Indeed, Lemma 12 shows

their equivalence when ǫ → 0+.

Lemma 10. A strategy si ∈ Si is ǫ-hesitation dominated if and only if it is a never

best response of (at least) one ǫ-hesitation game Γ̂ǫ(si, Ši).

Proof. Assume a strategy si is ǫ-hesitation dominated by σi ∈ Σi. It means that if Rσi

is observed with probability ǫ, then the utility from playing σi is strictly higher than

from playing si. Therefore, si is never best response of the ǫ-hesitation game Γ̂ǫ(si, Rσi
).

Now, by contrapositive, assume that si is not ǫ-hesitation dominated by any σi ∈ Σi

and let us show it is a best response to a belief for i when i plays a given ǫ-hesitation

game Γ̂ǫ(si, Ši). Consider the vectors
−→
V ǫ
i (σi, Ši) = {V ǫ

i (σi, sj, s
∗
j)}sj∈Sj ,s

∗

j
⊂b(Ši)

for each

σi ∈ si ∪ ∆(Ši). Simply, these vectors are such that each component l + m is the

payoff i can obtain when playing σi and when j plays the pure strategy slj ∈ Sj with

probability 1 − ǫ and the pure strategy s∗
m

j ⊂ b(Ši) with probability ǫ. We denote

Y (si, Ši) the set of such vectors. Besides, we can construct the following set X . If k

is equal to ♯(Sj)× ♯(b(Ši))
35, then X is the set

{
x ∈ Rk |x >

−→
V ǫ
i (si)

}
, that is the set

of all payoffs that strictly dominate si payoffs. Both X and Y (si, Ši) are convex sets.

Since si is not ǫ-hesitation dominated, these sets are disjoint. Then, we can apply the

separating hyperplane theorem which states that there is a vector in Rk, π ≥ 0 with

π 6= 0 and such that:

∀y ∈ Y (si, Ši), ∀x ∈ X, π · y ≤ π ·
−→
V ǫ
i (si) ≤ π · x

It directly implies that ∀σi ∈ si ∪∆(Ši), π ·
(−→
V ǫ
i (si)−

−→
V ǫ
i (σi)

)
≥ 0.

Now, remark that this is true for every hesitation game and finally we get the

result.

�

Conversely, a strategy si ∈ Si being ǫ-hesitation undominated is a best response in

all ǫ-hesitation games Γ̂ǫ(si, Ši). Though, it does not mean that si necessarily verifies

Equation (1):

∃σj ∈ Σj , such that ∀σi ∈ Σi, ∃σ
∗
j ⊂ b(Rσi

), V ǫ
i (si, σj , σ

∗
j ) ≥ V ǫ

i (σi, σj, σ
∗
j ) (1)

Here, we stress the fact that the strategy σj ∈ Σj is not necessarily the same for

all the hesitation games when it is stated that a strategy is a best response in all

hesitation games. The equivalence holds only when ǫ → 0+:

35We denote ♯(Si) the number of elements in the set Si.
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Lemma 11. A strategy si ∈ Si is a best response to all ǫ-hesitation games Γ̂ǫ(si, Ši)

when ǫ → 0+ if and only it verifies Equation (1) when ǫ → 0+.

Proof. Set ǫ → 0+. Assume that si is a best response in all ǫ-hesitation games

Γ̂ǫ(si, Ši). Then,

∀σi ∈ Σi, ∃σj ∈ Σj , ∃σ
∗
j ⊂ b(Rσi

), such that V ǫ
i (si, σj , σ

∗
j ) ≥ V ǫ

i (σi, σj , σ
∗
j )

By continuity of V ǫ
i in parameter ǫ, it is immediate that we have:

∀σi ∈ Σi, ∃σj ∈ Σj such that E[Ui(si, σj)] ≥ E[Ui(σi, σj)]

By Pearce (1984, Lemma 3), the previous equation is equivalent to:

∃σj ∈ Σj such that ∀σi ∈ Σi, E[Ui(si, σj)] ≥ E[Ui(σi, σj)]

This last equation is well equivalent to Equation (1) when ǫ → 0+. The same reasoning

as above can be applied to show the converse part of this result. �

Now, we state the equivalence between hesitation dominance when the perturbation

occurs with an infinitesimal probability and root dominance:

Lemma 12. A strategy is ǫ-hesitation dominated when ǫ → 0+ if and only if it is root

dominated.

Proof. The “if” part is straightforward. Indeed, assume that si ∈ Si is root dominated

by σi ∈ Σi. First, RD1′ and RD2′ imply that σi weakly dominates si. Thus, ∀σj ∈

Σj , Ui(σi, σj) ≥ Ui(si, σj). Second, RD2′ states that for each best response to a

strategy in the support of σi, the expected payoff from playing σi is strictly higher.

Therefore, ∀σ∗
j (σi) ⊂ b(Rσi

), we have Ui(σi, σ
∗
j (σi)) > Ui(si, σ

∗
j (σi)). Then, for any

ǫ > 0, and ∀σj ∈ Σj , ∀σ
∗
j (σi) ⊂ b(Rσi

):

V ǫ
i (σi, σj , σ

∗
j (σi)) > V ǫ

i (si, σj , σ
∗
j (σi))

For the “only if” part, assume that si is ǫ-hesitation dominated by σi but root un-

dominated by σi. Undomination means that either (i) there is a σj ∈ Σj such that

E[Ui(si, σj)] > E[Ui(σi, σj)] or (ii) there is a σ∗∗
j ⊂ b(Rσi

) such that E[Ui(si, σ
∗∗
j )] ≥

E[Ui(σi, σ
∗∗
j )]. About (i), we remark that V ǫ

i is continuous in the parameter ǫ. Then,

it is not possible to have simultaneously E[Ui(si, σj)] > E[Ui(σi, σj)] and ∀σ∗
j (σi) ⊂

b(Rσi
), V ǫ

i (σi, σj , σ
∗
j (σi)) > V ǫ

i (si, σj , σ
∗
j (σi)) when ǫ → 0+. Besides, the hypothesis

(ii) directly implies that V ǫ
i (si, σ

∗∗
j , σ∗∗

j ) ≥ V ǫ
i (σi, σ

∗∗
j , σ∗∗

j ). In both cases, there is a

contradiction with the hypothesis of 0+-perturbed dominance. �
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Finally, we can state the first main result of this section, namely the equivalence

between root dominance of si and rationality when considering all the ǫ-hesitation

games Γ̂ǫ(si, Ši) associated to Γ:

Theorem 6. A strategy si ∈ Si is root dominated if and only if it is a never best

response of (at least) one ǫ-hesitation game Γ̂ǫ(si, Ši) when ǫ → 0+.

Proof. The result is immediate by Lemmas 10 and 12. �

Thus, if player i believes that his opponent j may have his perception of the game

altered by the alternatives he considers when testing strategies, he never plays root

dominated strategies.

In the different context of ordinal preferences, Börgers (1993) characterizes non

rationality by weak dominance against every j’s strategy subset (but weak dominance

is not required to be made by the same strategy). Here, in contrast, player i does not

restrict the game with respect to j′s strategies, but with respect to his own strategies

(and then j reacts optimally to these restrictions with probability ǫ). Furthermore, it

is the notion of rationality that we test against strategy subsets and not the dominance

relation since the requirements of RD1′ and RD2′ are with respect to the whole game.

Besides, we can write the alternative characterization of root undominance:

Corollary 1. A strategy si ∈ Si is root undominated if and only if it verifies Equa-

tion (1) when ǫ → 0+.

Proof. The result is immediate by combining Lemma 11 and Theorem 6. �

I.2 Deviation games

Here, we introduce our second perturbation of the game. This perturbation is such

that each player believes that the opponent may observe both his “reference” strategy

and the support of strategies from which a deviation might be picked by the player

contemplating alternatives. In this case we will say the game is turned into a pseudo

extensive form game:

Definition 24. A pseudo extensive form game Γ̌(σr
i , Ši) is a game where i chooses a

strategy in σr
i ∪∆(Ši), where Ši is a subset of Si. Strategy σi is the reference strategy

of i, and Ši is the support of any strategy towards which i wants to deviate. Player j

observes this information perfectly, then forms beliefs, and plays accordingly.
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Definition 25. An ǫ-deviation game Γ̌ǫ(σr
i , Ši) for strategy σr

i ∈ Σi is a game where:

1. Player i chooses the strategy σr
i ∈ Σi,

2. Player i chooses a deviation subset Ši ⊂ Si,

3. Player i plays any strategy in σr
i ∪∆(Ši),

4. With probability ǫ, the previous steps form the first stage of a pseudo extensive

form game,

5. Player j chooses a strategy in the second stage.

When player j faces a deviation, we assume that his only concern is whether

the deviation is credible according to all available information. If the deviation is

credible, player j should react optimally. Otherwise, he can have any belief. This

last assumption does not imply that j believes that i has lied, or the observation is

not accurate (we assume it is not possible), but rather than a non credible deviation

is meaningless for j. In other words, it is as if i said some thoughtless things that

do not impact real decisions. In this case, the deviation is disregarded. Now, what

do we mean by credible? Following Baliga and Morris (2002) and their notion of self

signaling strategies for games with pre-play communication (see Appendix F for more

details), we now introduce the notion of self improving strategy subset:

Definition 26. A strategy subset Ši ⊂ Si is self improving with respect to σi ∈ Σi if

∀σ∗
j ⊂ b(Ši), ∃σ

′′
i with Rσ′′

i
= Ši:

Ui(σ
′′
i , σ

∗
j ) > Ui(σi, σ

∗
j )

In words, Ši is self improving with respect to σi if for all best responses to Ši, there

is a strategy whose support is Ši which yields a strictly higher payoff than σi. Remark

that if the subset Ši is reduced to a singleton {s′′i }, then we have the same condition as

in RD2. Furthermore, if it is the same strategy σ′′
i which strictly dominates σi, then

we have the same condition as in RD2′. Since we only consider two-player games, this

is always verified thanks to Pearce (1984, Lemma 3). Thus, we can equivalently write

the following definition:

Definition 27. A strategy σ′′
i ∈ Σi is self improving with respect to σi ∈ Σi if ∀σ

∗
j ⊂

b(Rσ′′

i
):

Ui(σ
′′
i , σ

∗
j ) > Ui(σi, σ

∗
j )
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Instead, a strategy σ′′
i is self signaling when it is a best response itself (to the

best response(s) played by j)36. Then, this requirement is stronger and seems to be

more attractive when j assesses the credibility of the deviation. However, we have

to recall that the chosen strategy matters both when no deviation is observed (with

probability 1− ǫ) and when there is deviation (with probability ǫ). Therefore, it may

be natural that player j does not “expect” player i to maximize his utility when seeing

the deviation, since observation by j will be made unknown for i. Conversely, player

j cannot expect that i has played the deviation if whatever the optimal response he

makes to this deviation, i’s payoff is not increased. That is why we define credibility

in the following way:

Definition 28. A deviation Ši ∈ Si from σr
i ∈ Σi in a pseudo extensive form game

Γ̌(σr
i , Ši) is credible if there is a strategy σ′′

i ∈ Σi such that:

• Rσ′′

i
= Ši,

• And, σ′′
i is self improving with respect to σr

i .

Thus, the deviation is credible if there is a strategy σ′′
i whose support is Ši, and

if played in the first stage of an extensive form game, pays off strictly more than σr
i

(given that j would react optimally to σ′′
i ).

With the next assumption, we will restrict the beliefs of player j when facing a

pseudo extensive form game Γ̌(σi, Ši). We assume that when the deviation is credible,

the belief of j that i has played a strategy whose support is contained in Ši is 1. In

any other case, any belief is allowed. We note βj
i the vector which contains all the

elements βj
i [Ši] and that represents j’s assessment of the probability that i plays a

strategy contained in Ši. Now, we formalize the assumption described just above:

Assumption C. Player j, when observing a deviation Ši ∈ Si from σi ∈ Σi has the

following beliefs:

• Either Ši is credible in which case βj
i [Ši|Ši is “observed” ] = 1,

• Or Ši is not credible in which case cells in the vector βj
i [ |Ši is “observed” ] can

take any value.

Now, we define the best response of an ǫ-deviation game:

36Of course, we make a slight abuse here because there is no notion of Best Response Set in Baliga

and Morris (2002) and we take into account strategy subsets. However, since Baliga and Morris

(2002) consider only pure strategies, the comparison would be relevant in their framework.
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Definition 29. Consider an ǫ-deviation game Γ̌ǫ(σr
i , Ši). A strategy σ∗

i ∈ si ∪∆(Ši)

is a best response of the ǫ-deviation game if:

∃σj ∈ Σj , ∃σ̂j ∈ Σj , ∀σi ∈ ∆(Ši): V ǫ
i (σ

∗
i , σj , σ̂j) ≥ V ǫ

i (σi, σj , σ̂j)

Naturally, a best response for i in the ǫ-deviation game is a strategy which max-

imizes i’s utility when j plays σj with probability 1 − ǫ, and σ̂j with probability ǫ.

Obviously, without further restriction, any standard best response is a best response

of the ǫ-deviation game (think simply to cases where σ̂j = σj). When using Assump-

tion C, we can re-write the above definition in the following way:

Lemma 13. Consider an ǫ-deviation game Γ̌ǫ(σr
i , Ši). Under Assumption C, a strat-

egy σ∗
i ∈ σr

i ∪∆(Ši) is a best response of the ǫ-deviation game if and only if either:

• The deviation Ši from σi is credible,

• And,

∃σj ∈ Σj , ∃σ
∗
j ⊂ b(Ši), ∀σi ∈ σr

i ∪∆(Ši): V ǫ
i (σ

∗
i , σj , σ

∗
j ) ≥ V ǫ

i (σi, σj, σ
∗
j )

(cD-BR)

Or,

• The deviation Ši from σi is not credible,

• And, ∃σj ∈ Σj such that ∀σi ∈ σr
i ∪∆(Ši): Ui(σ

∗
i , σj) ≥ Ui(σi, σj).

In words, Lemma 13 means that if the deviation is credible, a best response of the

ǫ-deviation game Γ̌ǫ(si, Ši) is a best response to a game where j reacts optimally to Ši

with probability ǫ. Instead, if the deviation is not credible, a best response is simply

a best response according to the standard definition (see Definition 12 above) applied

to σr
i ∪∆(Ši). Remark that a best response response of a ǫ-hesitation game is also a

best response of the linked ǫ-deviation game when the deviation is credible:

Lemma 14. Consider an ǫ-deviation game Γ̌ǫ(σr
i , Ši). Under Assumption C, if the

deviation is credible, a strategy σ∗
i ∈ σr

i ∪ ∆(Ši) is a best response of the ǫ-deviation

game if and only if it is a best response of the ǫ-hesitation game Γ̂ǫ(σr
i , Ši).

Proof. The proof is immediate since Equation (H-BR) and Equation (cD-BR) are

equivalent. �
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Besides, notice that the deviation credibility does not imply that the reference

strategy σr
i is a never best response of the ǫ-deviation game if the deviation is credible.

Now, we can show that the previous result can be applied to the reference strategy

even if the deviation is not credible:

Lemma 15. Under Assumption C, a strategy σr
i ∈ Σi is a best response of an ǫ-

deviation game Γ̌ǫ(σr
i , Ši) if and only if it is a best response of the associated ǫ-hesitation

game Γ̂ǫ(σr
i , Ši).

Proof. First, when the deviation is credible, Lemma 14 applies. Now assume the

deviation is not credible. The “if” part is straightforward. Indeed, a best response in

the ǫ-hesitation game is with respect to a belief with probability 1− ǫ and to a belief

that a best response to Ši is played with probability ǫ. Then, when the deviation Ši

from si is not credible, any belief can be sustained, among which the one inducing

that σr
i is a best response of the ǫ-hesitation game. Conversely, assume σr

i is a best

response to the considered ǫ-deviation game. If the deviation is not credible, it means

that there is no strategy σ′′
i whose support is Ši and is self improving with respect

to σr
i , i.e. checking ∀σ∗

j ⊂ b(Ši), Ui(σ
′′
i , σ

∗
j ) > Ui(σ

r
i , σ

∗
j ). Thus, no strategy strictly

dominates σr
i when we restrict attention to b(Ši). Therefore, since it is a two-player

game, by Pearce (1984, Lemma 3), σr
i is a best response to at least one strategy

σ∗
j ∈ b(Ši). Since σ

r
i is also a best response to another strategy σj (potentially outside

b(Ši)) by Lemma 13, σr
i is a best response to (σj , σ

∗
j ) in the ǫ-hesitation game.

�

In fact, any best response of the ǫ-hesitation game is also a best response of the

ǫ-deviation game. However, the converse is not true and the result only holds for the

reference strategy σr
i or when the deviation is credible.

Now, we can state the second main result of this section, still considering only

two-player games:

Theorem 7. Under Assumption C, a strategy si ∈ Si is root dominated if and only if

it is a never best response in (at least) one ǫ-deviation game Γ̌ǫ(si, Ši) when ǫ → 0+.

Proof. The result is immediate by Lemma 15 and Theorem 6. �

Theorem 7 establishes that a strategy si ∈ Si is root dominated if it is never

optimal in (at least) one 0+-deviation game. That is, if i thinks about deviations

from a reference strategy and believes that these thoughts can be observed with an

infinitesimal probability, he never plays root dominated strategies.
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Root Undominated si ∈ Si is equivalent to be:

- Locally 0+-rational under Assumption R (Theorem 5)

- Best Response of all 0+-hesitation games (Theorem 6)

- Best Response of all 0+-deviation games under Assumption C (Theorem 7)

Figure 12: Summary of the Results

J Rationality when ǫ moves away from 0

Now, let us examine the implications of such concepts on games outcomes when ǫ

is far from 0. By contrast with the statement of Fact 1, our concepts of rationality

do not refine the standard definition of rationality (see Definition 12) in this case:

they are unnested. This might be seen as theoretical weakness. However, it can

still be of interest in situations where experimental studies results differ from game

theory predictions. The most famous example is the discrepancy between them in

the prisoners’ dilemma. In the dilemma, the strictly dominated strategy “cooperate”

would never be rational under our concepts. Thus, the cooperation outcome would

never emerge. Though, it is not because the strategy is dominated, it is because the

strategy “cooperate” of both players is dominated. When ǫ is high enough, in the

case where only one player has a strictly dominated strategy, a strictly dominated

strategy can be globally rational, and the dominant strategy not globally rational as

the following example shows. Global rationality may generate Pareto improvement

with respect to the Nash outcome (we show in green the Nash equilibrium):

j’s Strategy

i’s Strategy L R

T (4, 1) (2, 2)

B (3, 3) (1, 1)

Table 11: Pareto efficiency of Global Rationality for intermediate values of ǫ

If ǫ is high enough, but not too high, T is not globally rational since the payoff of

(T,R) is below the payoff of (B,L) (both profiles where j best responds), and both j’s

strategies are globally rational. Then, an iterated elimination of non globally rational
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strategies would generate the outcome (B,L). However, notice that if ǫ is very high, L

is not globally rational anymore. That is, a consistency problem appears when players

falsely firmly believe that the opponent best responds to his strategy. Additionally, it

could lead to the Pareto worst outcome (B,R).
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