
Bounded rationality is asymptotically rare

Alfio Giarlotta∗, Angelo Petralia†, Stephen Watson‡

August 5, 2021

Abstract

We define a class of properties of choices, called hereditary finitely violated (HFV),
which encompasses several declinations of bounded rationality proposed in the litera-
ture. HFV properties asymptotically fail to hold for all choices. It follows that almost
all finite choices cannot be explained by most known models of bounded rationality.
We provide numerical estimates confirming the rarity of bounded rationality even for
relatively small sets of alternatives.

JEL Classification: D01.

1 Rationalizability and bounded rationality

According to the theory of revealed preferences pioneered by Samuelson (1938), choice
is observed and preference is revealed. In this approach, rationality coincides with the
possibility to justify the choice behavior of a decision maker (DM) by maximizing the binary
relation of revealed preference. However, this notion of rationality, called rationalizability,
fails to explain many observed phenomena. Following the inspiring analysis of Simon (1955),
in the last twenty years rationalizability has been weakened by forms of bounded rationality,
which aim to explain a larger portion of choices by means of more flexible paradigms.

Within this stream of research, Kalai, Rubinstein, and Spiegler (2002) describe an
approach of ‘multi-rationalization’, which uses distinct rationales (linear orders) to explain
choice behavior. According to this model of rationalization by multiple rationales (RMR),
selection from a menu is justified by maximizing one of the available orders, with no need
to semantically link the rationale to the menu itself. By its own nature, the RMR model
is universal: any choice is multi-rationalizable, because the number of rationales can be
increased as needed to explain any type of behavior. Thus, the authors study minimal
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representations. Their Proposition 1 shows that any choice c on n elements requires at
most n ´ 1 rationales. It follows that the degree of rationality of c ranges from 1 (for
rationalizable choices) to n ´ 1 (for chaotic choices).1 Furthermore, their Proposition 2
determines the asymptotic behavior of this degree of rationality: as n tends to infinity,
almost all choices become chaotic.

Alternative models of bounded rationality aim to identify regularity properties entailed
by a theory of choices. Without being exhaustive, we mention some of them (see also
Section 2A.) In the work of Masatlioglu and Ok (2005), later elaborated by Apesteguia
and Ballester (2013), the DM restricts her attention to alternatives that are superior to her
status quo. Manzini and Mariotti (2007) propose an approach in which the DM selects from
each menu the unique item that survives after the sequential application of distinct criteria
(asymmetric relations). Xu and Zhou (2007) characterize a rationalization method which
justifies the selection from any menu as the subgame perfect Nash equilibrium outcome of
an associated extensive game. Rubinstein and Salant (2008) investigate a post-dominance
rationality choice rule: the DM first discards any alternative which is dominated by an-
other alternative in the menu, and then chooses the best alternative from the remaining
ones. According to the choice procedure of Manzini and Mariotti (2012), the DM only
considers those alternatives that belong to some salient categories. Masatlioglu, Nakajima,
and Ozbay (2012) describe a DM with limited attention, who is unable to take into account
all the alternatives in a menu. A similar argument is used by Lleras, Masatlioglu, Naka-
jima, and Ozbay (2017) to analyze overwhelming choices. Cherepanov, Feddersen, and
Sandroni (2013) present a theory of rationalization, in which the DM discards items not
satisfying some psychological constraint. In the work of Apesteguia and Ballester (2013) the
DM’s choice is guided by routes. Yildiz (2016) discusses a choice rule based on a pairwise
comparison of items according to an ordered list.

The bounded rationality methods mentioned above explain choice behavior by ‘sequen-
tial procedures’ that appeal to different categories of tools (several binary relations, a
relation and a choice correspondence, game trees, etc.). However, these methods do have
a common feature: they are non-universal, in the sense that some choice behaviors are
boundedly rationalizable, but (many) others are not. The following query arises:

Question. As the number of items tends to infinity, what is the fraction of boundedly
rationalizable choices?

In other words: What is the asymptotic explanatory power of non-universal models
of bounded rationality? This note answers this question for all discussed approaches (in
fact, also for others). To that end, we study suitable properties of choices, which we call

1 The expressions ‘degree of rationality’ and ‘chaotic choice’ are ours.
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hereditary finitely violated (HFV). Our main result shows that HFV properties fail to hold
for almost all choices. Then we derive what one may expect from the very concept of
bounded rationality: non-universal models explain less and less as the size of the ground
set grows larger and larger. To make our analysis more concrete, we also provide some
numerical estimates that confirm the rarity of bounded rationalizability.

Our findings reinforce the belief that if an observed choice behavior is explained by a
bounded rationality model, then we ought to be confident that that behavior has a sound
justification. As a byproduct of our approach, we finally derive a striking analogy between
universal and non-universal models: as the number of items approaches infinity, not only
‘chaotic rationality’ but also ‘bounded irrationality’ rule supreme.

2 Hereditary finitely violated properties

Let X be a nonempty finite set of options available to the decision maker. A nonempty
set A Ď X is a menu, and X “ 2Xzt∅u denotes the family of all menus. A choice
correspondence on X is a map c : X Ñ X , which selects at least one item from each
menu, that is, ∅ ‰ cpAq Ď A for any A P X . In particular, a choice function selects a
unique item from each menu; thus, we identify it with a map c : X Ñ X such that cpAq P A
for any A P X . Here we mostly deal with choice functions: unless unclear from context,
we refer to them as choices.

A binary relation ą on X is a subset of X2. It is asymmetric if x ą y implies ␣py ą xq

for all x, y P X, transitive if px ą yq^py ą zq implies x ą z for all x, y, z P X, and complete
if either x ą y or y ą x holds for all distinct x, y P X. An asymmetric, transitive, and
complete binary relation is a linear order, often denoted by �.

Given an asymmetric relation ą on X and a menu A P X , the set of maximal (or
non-dominated) elements of A is maxpA,ąq “ tx P X : y ą x for no y P Au. The theory of
revealed preferences pioneered by Samuelson (1938) studies when and how a binary relation
justifies choice behavior by maximization. Formally, a choice c : X Ñ X is rationalizable
(or binary) if there is an asymmetric relation (in fact, a linear order) ą on X such that,
for any A P X , cpAq is the unique element of the set maxpA,ąq; in this case, we slightly
abuse notation, and write cpAq “ maxpA,ąq. If ą is an asymmetric relation on X, and A

is a nonempty subset of X, we denote by ąæA the restriction of ą to A, that is, for any
a, b P A, a ąæA b holds if and only if a ą b. Note that if � is a linear order on X, then �æA

is a linear order on A Ď X.

Definition 1. Let c : X Ñ X be a choice function. For any A P X , let A be the family
of nonempty subsets of A. The choice induced by c on A is cæA : A Ñ A, defined by
cæApBq “ cpBq for any B P A . Given two choices c : X Ñ X and c1 : A Ñ A, where
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A P X , we say that c contains c1 (or c1 is a subchoice of c) if the equality c1pBq “ cæApBq

holds for any B P A .

The central notion of this paper is a category of properties of choice functions that
extend to all of their subchoices, and are non-universally satisfied on finite sets. We shall
show that these properties are ‘asymptotically rare’, that is, the fraction of choices satisfying
any of them is negligible as the size of the ground set grows larger and larger.

Definition 2. A property P of choice functions is a second order logic formula (with
quantification over elements and sets) involving a constant symbol for choice functions. A
property P is called:

• hereditary if whenever P holds for a choice function c, then P also holds for all
subchoices cæA, with A ranging over X ;

• finitely violated if there is a choice function for which P fails to hold.2

Then P is hereditary finitely violated (HFV) if it is both hereditary and finitely violated.
Furthermore, we say that P is asymptotically rare if, as the size of the ground set tends
to infinity, the fraction of choices satisfying P tends to 0.

Definitions 1 and 2 are given for choice functions, but they extend to choice correspon-
dences: see Cantone, Giarlotta, and Watson (2021, Sections 2 and 3).

Example 1. Many well known properties of choice functions/correspondences are HFV.
For instance, Axiom α, originally introduced by Chernoff (1954) and so called by Sen
(1971), is hereditary finitely violated.3 Additional HFV properties are the following axioms
of choice consistency: β, γ, ρ, path independence, and WARP.4 On the other hand, some
properties of choices are not finitely violated, and some others are not hereditary. For in-
stance, the rationalizability of choice functions by multiple rationales à la Kalai, Rubinstein,
and Spiegler (2002) is not finitely violated. Furthermore, the property of being non-chaotic5

is non-hereditary.6
2 We employ the term ‘finitely’ because one can consider choices defined on infinite ground sets. However,

in this note we do not wish to address this more complicated issue.
3 Recall that a choice correspondence c : X Ñ X satisfies Axiomα whenever for any x P X and A,B P X ,

if x P A Ď B and x P cpBq, then x P cpAq.
4 See Cantone, Giarlotta, and Watson (2021, Section 3.2), and references therein.
5 A choice function on n items is non-chaotic if at most n ´ 2 linear orders rationalize it.
6 Another property of choice correspondences that fails to be hereditary is CWDE (Choosing Without

Dominated Elements), which is used by García-Sanz and Alcantud (2015) to (partially) extend the char-
acterization of the rational shortlist method of Manzini and Mariotti (2007) to choice correspondences:
see Cantone, Giarlotta, and Watson (2021, Section 3.5).
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A Non-universal models of bounded rationality
We briefly describe the non-universal7 bounded rationality models mentioned in Section 1,
and show that the associated notions of rationalizability are HFV properties.

A choice function c : X Ñ X is called:

(i) Rationalizable if there is a linear order � on X such that cpAq “ maxpA,�q for all
A P X .

(ii) With status quo bias (Apesteguia and Ballester, 2013, p.92) if there is a triple p�, d,Qq,
with � linear order on X, d P X, and Q Ď tx P X : x� du, such that, for any S P X ,
either properties (1)-(2)-(3) or properties (1)-(2)-(31) hold:

(1) if d R S, then cpSq “ maxpS,�q ;
(2) if d P S and QX S “ ∅, then cpSq “ d ;
(3) if d P S and QX S ‰ ∅, then cpSq “ maxpQX S,�q ;
(31) if d P S and QX S ‰ ∅, then cpSq “ maxpSztdu,�q .8

(iii) Sequentially rationalizable (Manzini and Mariotti, 2007) if there exists an ordered
list pą1, . . . ,ąnq of asymmetric relations on X such that, for all A P X , defining
recursively M0pAq :“ A and MipAq :“ maxpMi´1pAq,ąiq for each i “ 1, . . . , n, we
have cpAq “MnpAq.

(iv) Rationalizable by game trees (Xu and Zhou, 2007) if there is a game tree pG,Rq,
where (1) G is a rooted tree whose terminal nodes are bijectively mapped onto X,
and (2) R is a list pR1, . . . , Rnq of linear orders on X, each of which is associated to
one of the n players of the game, such that cpAq “ SPNE pG|A;Rq for all A P X .
(Here G|A is the reduced tree derived from G by retaining only paths that lead to
terminal nodes in A, and SPNEpΓq is the subgame perfect Nash equilibrium outcome
of the game Γ.)

(v) Rationalizable by a post-dominance rationality procedure (Rubinstein and Salant,
2008) if there are (1) an acyclic dominance relation R on X, and (2) a post-dominance
relation ą on X (which is transitive and complete whenever restricted on sets of
undominated elements) such that cpAq “ maxpmaxpA,Rq,ąq for all A P X .

(vi) Categorize-then-choose (Manzini and Mariotti, 2012) if there are (1) an asymmetric
relation ą˚ on X (shading relation), and (2) an asymmetric complete relation ą

7 Recall that a choice model is universal if it rationalizes any choice, and non-universal otherwise.
8 This notion, defined for a collection of ‘choice problems’, is due to Masatlioglu and Ok (2005).

Apesteguia and Ballester (2013) call extreme endogenous status quo biased choices satisfying (1)-(2)-(3)
for all S P X , and weak endogenous status quo biased those satisfying (1)-(2)-(31) for all S P X .
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on X such that cpAq “ maxpmaxpA,ą˚q,ąq for all A P X , where maxpA,ą˚q “
Ť

tmaxpA ,ą˚qu.9

(vii) With limited attention (Masatlioglu, Nakajima, and Ozbay, 2012) if there are (1)
a choice correspondence Γ: X Ñ X (attention filter) such that x R ΓpAq implies
ΓpAq “ ΓpAztxuq, and (2) a linear order � on X such that cpAq “ maxpΓpAq,�q,
where A P X and x P X.

(viii) Consistent with basic rationalization theory (Cherepanov, Feddersen, and Sandroni,
2013) if there are (1) a correspondence ψ on X satisfying Axiom α (psychological
constraint), and (2) an asymmetric relation ą on X such that cpAq “ maxpψpAq,ąq

for all A P X .10

(ix) A sequential procedure guided by a set of routes (Apesteguia and Ballester, 2013) if
there is a collection R of linear orders (routes), defined on the family B of all binary
menus of X , such that cpAq “ cpAztrpA�quq for all A P X and � P R, with rpA�q

being the item discarded in the first (according to �) binary submenu of A.11

(x) List-rational (Yildiz, 2016) if there is a linear order f (list) on X such that cpAq “
cptcpAztxuq, xuq for all A P X , where x “ maxpA, fq.

(xi) Overwhelming (Lleras, Masatlioglu, Nakajima, and Ozbay, 2017) if there are (1) a
choice correspondence ψ on X satisfying Axiomα, and (2) a linear order � on X such
that cpAq “ maxpψpAq,�q for all A P X .

As announced, we have:

Lemma 1. All properties (i)–(xi) are HFV.

Proof. All choice models (i)–(ix) are characterized by behavioral axioms, which are finitely
violated. Thus, it suffices to prove hereditariness.

(i) Let c : X Ñ X be a choice rationalizable by some linear order � on X. Since
cæApBq “ cpBq “ maxpB,�q “ max

`

B,�|A

˘

for any B P A , the claim follows. (See
Definition 1.)

(ii) Let c : X Ñ X be a choice with status quo bias. Fix A P X and a0 P A. Set
9 Given a binary relation ą˚ on X and a menu A P X , the set maxpA ,ą˚q is the collection of (non-

dominated) menus tB Ď A |B1 ą B for no B1 Ď Au.
10 If ą is a linear order, c is said to be consistent with order rationalization theory.
11 For any B P B, denote by rpBq the item rejected in B. For any A P X , with |X| ě 2, and any route

� on B, the first binary submenu of A according to the route � is the menu A� such that either A� “ A
if |A| “ 2 or, otherwise, A� P B, A� Ĺ A, and, for any B P B distinct from A� such that B Ĺ A, we have
that B �A�.
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dA :“

#

d if d P A
a0 otherwise.

and QA :“

#

QXA if d P A
ta P A : a� dAu otherwise.

We claim that p�A, dA, QAq witnesses that cæA is an (extreme or weak) endogenous
status quo biased choice (see Footnote 8). Let S P A . There are 3 cases.

(I) Suppose d R A. Since c satisfies (1), we get cpT q “ maxpT,�q for any T P X . By
definition, dA is an item a0 P A, and QA is the set of all items in A that dominate a0.
Fix an arbitrary menu S P A . If dA “ a0 R S, then cæApSq “ cpSq “ maxpS,�q “

max pS,�æAq, hence (1) holds for cæA. If dA “ a0 P S and QA X S “ ∅, then
cæApSq “ cpSq “ maxpS,�q “ max pS,�æAq “ dA, and so (2) holds for cæA as well.
Finally, suppose dA “ a0 P S and QA X S ‰ ∅. Thus cæApSq “ cpSq “ maxpS,�q “

max pS,�æAq “ max pQA X S,�æAq “ max pSztdAu,�æAq, which says that both (3)
and (31) hold for cæA.

(II) Suppose d P A andQXA “ ∅. By the definition of dA andQA, we have dA “ d and
QA “ ∅. Fix S P A . If dA “ d R S, then property (1) of c yields cpSq “ maxpS�q,
and so cæApSq “ cpSq “ maxpS,�q “ max pS,�æAq, that is, (1) holds for cæA. On
the other hand, if dA “ d P S, then cæApSq “ cpSq “ dA by property (2) for c, which
proves (2) for cæA. (Note that both (3) and (31) vacuously hold for cæA in this case.)

(III) To complete the proof, let d P A and Q X A ‰ ∅, hence dA “ d and QA “

Q X A ‰ ∅ by definition. Fix S P A . If dA R S, then cæApSq “ cpSq “ maxpS,�q “

max pS,�æAq by property (1) for c, and so (1) holds for cæA as well. Next, suppose
dA P S. Note that since S Ď A, we have QA X S “ pQ X Aq X S “ Q X S. Now, if
QA X S “ ∅, then QX S “ ∅, hence cpSq “ d “ dA by property (2) for c. It follows
that cæApSq “ cpSq “ d “ dA, and so (2) holds for cæA as well. Finally, let dA P S and
QAXS ‰ ∅. Since S Ď A, we get QXS “ QAXS ‰ ∅, whence properties (3) and (31)
apply for c, yielding cpSq “ maxpQ X S,�q and cpSq “ maxpSztdu,�q, respectively.
Thus, either cæApSq “ cpSq “ maxpQXS,�q “ maxpQAXS,�q “ max pQA X S,�æAq

or cæApSq “ cpSq “ maxpSztdu,�q “ maxpSztdAu,�æAq, that is, either (3) or (31)
holds for cæA.

(iii) Let c : X Ñ X be a sequentially rationalizable choice, and pą1, . . . ,ąnq an ordered
list of asymmetric relations that sequentially rationalizes c. Let A P X . One can
readily check that

`

ą1
æA , . . . ,ą

n
æA

˘

is an ordered list of asymmetric relations, and
sequentially rationalizes the subchoice cæA : A Ñ A.

(iv) Let c : X Ñ X be a choice rationalizable by a game tree. It is known that c is
rationalizable by a game tree if and only if it satisfies ‘weak separability’ and ‘di-
vergence consistency’, defined as follows. Weak separability requires that for any
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menu A P X of size at least two, there is a partition tB,Du Ď A of A such that
cpS Y T q “ cptcpSq, cpT quq for any S Ď B and T Ď D.12 For each x, y, z P X, let
x ö ty, zu stand for cptx, y, zuq “ x but x, y, z give rise to a cyclic binary selection,
that is, either (i) cptx, yuq “ x, cpty, zuq “ y, and cptx, zuq “ z, or (ii) cptx, yuq “ y,
cpty, zuq “ z, and cptx, zuq “ x. Then divergence consistency requires that for any
x1, x2, y1, y2 P X, if x1 ö ty1, y2u and y1 ö tx1, x2u, then cptx1, y1uq “ x1 if and only
if cptx2, y2uq “ y2. For any A P X , one can readily check that cæA satisfies weak
separability and divergence consistency.

(v) Suppose c : X Ñ X is rationalizable by a post-dominance rationality procedure. Ru-
binstein and Salant (2008) show that such a choice is characterized by exclusion consis-
tency, which requires that for any A P X and any x P XzA, if cpAY txuq R tcpAq, xu,
then there is no set A1 containing x such that cpA1q “ cpAq. Toward a contradiction,
suppose cæA violates exclusion consistency for some A P X . Thus, there are B P A

and y P AzB such that cæApB Y tyuq R tcæApBq, yu, and cæApBq “ cæApB
1q for some

B1 P A . Since A Ď X, we get B,B1 P X , y P XzB, cpB Y tyuq R tcpBq, yu, and
cpBq “ cpB1q, which is impossible.

(vi) Suppose c : X Ñ X is categorize-then-choose. The authors show that c is categorize-
then-choose if and only if c satisfies Weak WARP (WWARP). This property, intro-
duced by Manzini and Mariotti (2007), requires that for any A,B P X and distinct
x, y P X, if x, y P A Ď B and cpx, yq “ cpBq “ x, then cpAq ‰ y. Cantone, Giarlotta,
and Watson (2019) argue that WWARP is hereditary. This suffices to prove that
categorize-then-choose is hereditary.

(vii) Let c : X Ñ X be with limited attention. Given A P X , the choice correspondence
ΓæA induced by the attention filter Γ on X is an attention filter on A. Since cæApBq “

cpBq “ maxpΓpBq,�q “ max pΓæApBq,�æAq for any B P A , the claim holds.

(viii) Suppose c : X Ñ X is consistent with basic rationalization theory. Given A P X ,
the choice correspondence ψæA induced by the psychological constraint ψ on X is
a psychological constraint on A. Thus the claim follows from cæApBq “ cpBq “

maxpψpBq,ąq “ max pψæApBq,ąæAq for any B P A .13

(ix) Apesteguia and Ballester (2013) show that a choice function is a procedure guided by
a set of routes if and only if it is sequentially rationalizable. Thus, the claim follows
from part (iii).14

12 Weak separability is a restricted version of path independence, defined by Plott (1973), which requires
that cpA Y Bq “ cpcpAq, cpBqq for any (not necessarily disjoint) A,B P X .

13 We can also use (vi) to prove the claim. Indeed, consistency with basic rationalization theory is equiv-
alent to ‘categorize-then-choose’ (Manzini and Mariotti, 2012), since both are characterized by WWARP.

14 The authors prove that any choice with status quo bias is rationalizable by game trees, and, in turn,
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(x) Let c : X Ñ X be a list-rational choice. For any B P A , we have that cæApBq “

cpBq “ cptcpBztxuq, xuq, where x “ maxpB, fq “ max
`

B, f|A

˘

.

(xi) Overwhelming choices are equivalent to choices consistent with order rationalization
theory due to Cherepanov, Feddersen, and Sandroni (2013). Thus, the claim follows
from part (viii).

This completes the proof of Lemma 1.

Remark 1. Lemma 1 can be proved by using a model-theoretic approach. Let a property
P of choice functions be unboundedly universal if P can be written as a sequence of
(unbounded) universal quantifiers over items or menus, followed by a formula Q all of
whose quantifiers are bounded (by the variables of those unbounded universal quantifiers).
Now observe that any unboundedly universal property is hereditary, and all properties of
the models (i)–(xi) (with the only exception of (ii)) are ‘unboundedly universal properties’.

3 Rarity of bounded rationality

The main result of this note is the following:

Theorem 1. Any HFV property is asymptotically rare.

In the path to prove Theorem 1, we need some preliminary results and notions.

Lemma 2. Let X be a finite set of size n ě 1. For any family pXjq
p
j“1 of pairwise disjoint

menus in X having size mj ě 1, the number of choice functions on X is
p

ź

j“1

ź

∅‰AĎXj

|A| ˆ
ź

∅‰BĎX
p@jqBĘXj

|B| “

p
ź

j“1

mj
ź

k“1

kp
mj
k
q ˆ

n
ź

k“1

kp
n
kq´

řp
j“1 p

mj
k
q. (1)

Proof. The number of choice functions on X is
ź

∅‰AĎX

|A| “
n

ź

k“1

kp
n
kq.

A straightforward computation yields15

p
ź

j“1

mj
ź

k“1

kp
mj
k
q ˆ

n
ź

k“1

kp
n
kq´

řp
j“1 p

mj
k
q “

n
ź

k“1

k
řp

j“1 p
mj
k
q ˆ

n
ź

k“1

kp
n
kq´

řp
j“1 p

mj
k
q “

n
ź

k“1

kp
n
kq.

The claim follows.
any choice rationalizable by game trees is sequentially guided by a set of routes. Thus, parts (ii) and (iv)
readily follow from (iii). However, for the sake of completeness, we have included a full proof of (ii).

15 Recall that
`

r
s

˘

is equal to zero by definition whenever r ă s.
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Remark 2. Lemma 2 can be stated requiring that pXjq
p
j“1 is such that |Xi XXj | ď 1 for

distinct i, j. For such a family, equation (1) still holds, since singletons may be counted
more than once. This observation will be crucial to obtain finer estimates: see Section 3B.

Next, we introduce the notion of isomorphic choices.

Definition 3. Two choice correspondences c : X Ñ X and c1 : X 1 Ñ X 1, respectively
having X and X 1 as ground sets, are isomorphic if there is a bijection σ : X Ñ X 1 such
that σpcpAqq “ c1pσpAqq for any A P X , where σpAq is the set tσpaq : a P Au. Whenever
c1 has a subchoice that is isomorphic to c, we shall say that c1 contains a copy of c.

A final notion is needed:

Definition 4. Let c : X Ñ X be a choice correspondence on X. For any permutation π

of X, let cπ : X Ñ X be the choice correspondence defined by cpAq :“ π´1pcpπpAqqq for
all A P X . We say that c is dynamic whenever all cπ’s are pairwise distinct.

In other words, a choice function/correspondence is dynamic whenever any relabeling
of the elements of the ground set produces a new choice. However, for the special case of
choice functions, the situation is straightforward:16

Lemma 3. All choice functions are dynamic.

Proof. Toward a contradiction, suppose c : X Ñ X is a non-dynamic choice function.
Thus, there are two distinct permutations π and σ of X such that cπ “ cσ. Without loss
of generality, assume σ is the identity and π is not, that is, cπ “ c with π ‰ idX . Set
A :“ tx P X : πpxq ‰ xu P X , and so πpAq “ A. We claim that cpAq is a fixed point of π,
that is, πpcpAqq “ cpAq. Indeed,

cpAq “ cπpAq “ π´1pcpπpAqqq ùñ πpcpAqq “ πpπ´1pcpπpAqqqq “ cpπpAqq “ cpAq .

Now the definition of A yields cpAq R A, which is impossible.

Finally, we get what we were after:

Corollary 1. Given a choice function c on a ground set X of size m ě 1, there are
exactly m! choice functions on X that are isomorphic to c.

Proof. This number is clearly at most m!, and is at least m! by Lemma 3.
16 The situation is more involved for a choice correspondence c, because the existence of nontrivial

indiscernible menus (Cantone, Giarlotta, and Watson, 2019) makes c non-dynamic (and the correspondent
group of automorphisms nontrivial). Moreover, the analysis is further complicated by the existence of non-
dynamic choice correspondences with no indiscernible menus other than singletons. Details are available
upon request.
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Corollary 1 plays a key role in the next result:

Lemma 4. Let X be such that |X| ě pm ě m, and c a choice on Y such that |Y | “ m ě 1.
The fraction of choices on X not containing a copy of c is ď

´

ϕpmq´m!
ϕpmq

¯p
.

Proof. Let pXjq
p
j“1 be p disjoint menus in X such that |Xj | “ m for all j’s. Set

ϕpmq :“
ź

∅‰AĎY

|A| “
m

ź

k“1

kp
m
k q and θpm,nq :“

ź

∅‰BĎX
p@jqBĘXj

|B| “
n

ź

k“1

kp
n
kq´ppmk q .

Since |Xj | “ |Y | for all j’s, Lemma 2 yields that the total number of choices on X is
equal to pϕpmqqp ¨ θpm,nq. By Corollary 1, there are exactly m! choices on each Xj that
are copies of c, hence the total number of choices on X not containing a copy of c is
ď pϕpmq ´m!qp ¨ θpm,nq. It follows that the fraction of choices that do not contain a copy
of c is at most

pϕpmq ´m!qp ¨ θpm,nq

pϕpmqqp ¨ θpm,nq
“

ˆ

ϕpmq ´m!

ϕpmq

˙p

,

as claimed.

Remark 3. According to Remark 2, in Lemma 4 it suffices to consider a family pXjq
p
j“1

of menus that pairwise intersect in at most one item, which can be obtained from a ground
set X of size ě m ` pp ´ 1qpm ´ 1q. To see why, fix a linear order � on X such that
|X| “ m`pp´1qpm´1q, and list its elements according to �. Define a family F :“ pXjq

p
j“1

of subsets of X all having size m by setting Xj :“ txpj´1qm´pj´2q, . . . , xjm´pj´1qu for any
j P t1, . . . pu. Each Xj is disjoint from all other elements of F , with the possible exception
of Xj´1 and Xj`1 (if they exist), for which the size of the intersection is one. Thus, in
Lemma 4 we can require |X| ě ppm´ 1q ` 1.

Lemma 5. Let c be a choice on a set of size m ě 1. For any ϵ ą 0, there is N P N such
that, for any n ą N , the fraction of all choices on a set of size n not containing a copy of
c is ă ϵ.

Proof. Fix ϵ ą 0. Let p P N be such that
´

ϕpmq´m!
ϕpmq

¯p
ă ϵ. We claim that N :“ pm works.

Let X be a set such that |X| “ n ą N . Therefore, X has at least p disjoint subsets of
size m. By Lemma 4, the fraction of all choices on X not containing a copy of c is at most
´

ϕpmq´m!
ϕpmq

¯p
ă ϵ.

We are finally ready to prove our main result.

Proof of Theorem 1. Let P be an HFV property. As P is finitely violated, there is a
choice c on a finite set Y for which P fails. Fix ϵ ą 0. By Lemma 5, there is an integer

11



N such that, for any n ą N , the fraction of all choices on a set X of cardinality n not
containing a copy of c is less than ϵ. Since P is hereditary, P does not holds for any choice
on X containing a copy of c. Thus, the fraction of all choices defined on X satisfying P is
less than ϵ.

The next result readily follows from Lemma 1 and Theorem 1.

Corollary 2. All properties (i)–(xi) are asymptotically rare.

Corollary 2 establishes the limited rationalizability of most bounded rationality ap-
proaches proposed in the literature. When the cardinality of the ground set increases, all
these methods gradually loose their predictive accuracy, and justify few choice behaviors
observed on that set. This fact supports the claim that all bounded rationality methods
introduced in the literature are explicative of ‘rational’ behavior.

Remark 4. The argument used in the proof of Theorem 1 also applies to choice corre-
spondences, provided that Lemmata 2 and 4 are suitably reformulated. To start, note that
the number of choice correspondences on a set X of size n is (Aleskerov, Bouyssou, and
Monjardet, 2007, p.29)

ź

∅‰AĎX

´

2|A| ´ 1
¯

“

n
ź

k“1

´

2k ´ 1
¯pnkq

.

Thus, given a family pXjq
p
j“1 of p disjoint menus in X having size mj ě 1, the number of

choice correspondences on X is
p

ź

j“1

ź

∅‰AĎXj

´

2|A| ´ 1
¯

ˆ
ź

∅‰BĎX
p@jqBĘXj

´

2|B| ´ 1
¯

“

p
ź

j“1

mj
ź

k“1

´

2k ´ 1
¯p

mj
k
q
ˆ

n
ź

k“1

´

2k ´ 1
¯pnkq´

řp
j“1 p

mj
k
q
.

For a ground set X of size n ě mp, there is a family pXjq
p
j“1 of p disjoint menus in X

all having size m. Thus, we can set (by adapting the definitions of ϕ and θ for choice
correspondences)

ϕpmq :“
m

ź

k“1

´

2k ´ 1
¯pmk q and θpm,nq :“

n
ź

k“1

´

2k ´ 1
¯pnkq´ppmk q

to conclude that the number of all choice correspondences on X is ϕppmq ¨ θpm,nq. Let c
be a choice correspondence on a set Y of cardinality m not satisfying some HFV property
P. Since there is at least a copy of c on each Xj , the fraction of choices on X which
do not contain a copy of c is at most

´

ϕpmq´1
ϕpmq

¯p
. This suffices to prove, using Lemma 5

and the remainder of Theorem 1’s proof, that any HFV property of choice correspondences
is asymptotically rare. A better estimate could be obtained by computing the number of
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choice correspondences that are isomorphic to a given one, which however appears to be a
rather challenging combinatorial problem.

A Numerical estimates
Lemma 4 allows us to obtain an upper bound for the probability to catch a boundedly
rationalizable choice on a ground set of a given size. Indeed, we have:

Corollary 3. Let c be a choice on a set Y of size m not satisfying an HFV property P.
Furthermore, let X be a set of size at least ζpϵ,mq :“

R

log ϵ

log
`

ϕpmq´m!
ϕpmq

˘

V

pm ´ 1q ` 1, where

0 ă ϵ ă 1. The fraction of choices on X satisfying P is less than ϵ.17

Proof. Fix ϵ ą 0, and let p P N such that
´

ϕpmq´m!
ϕpmq

¯p
ă ϵ. Taking logs, we get

p ą
log ϵ

log
´

ϕpmq´m!
ϕpmq

¯ . (2)

Let p˚ be the ceiling of log ϵ

log
`

ϕpmq´m!
ϕpmq

˘ . By Remark 3 and inequality (2), the fraction of

choices on X not containing a copy of c is less than ϵ. Since P is hereditary, the fraction
of choices on X satisfying P is less than ϵ.

By Corollary 3 and Lemma 1, for any 0 ă ϵ ă 1 and bounded rationality model not
explaining a choice on a set of minimal size m, the probability of finding a non-rationalizable
choice on a set X of cardinality at least ζpϵ,mq is less than ϵ. Note that if m is large, then,
for a given ϵ, the value of ζpϵ,mq may be exceptionally high. However, this never happens
for all the models examined in this paper, because the corresponding minimum value of m
is either 3 or 4:

Lemma 6. The minimum size m of the ground set of a choice that fails to be boundedly
rationalizable by models (i)–(xi) is

(a) m “ 3 for (i), (ii), (iii), (iv), (v), (ix), and (x),

(b) m “ 4 for (vi), (vii), (viii), and (xi).

Proof. (a) Clearly, we have m ě 3 for models (i), (ii), (iii), (iv), (v), (ix), and (x). To show
that m ď 3 for all of them, note any sequentially rationalizable choice satisfies the axiom
Always Chosen (Manzini and Mariotti, 2007, p. 1831),18 whereas a list-rational choice is

17 Here rlog ϵ{ log
`

pϕpmq ´ m!q{ϕpmq
˘

s denotes the ceiling of log ϵ{ log
`

pϕpmq ´ m!q{ϕpmq
˘

.
18 Always Chosen holds for c if for any A P X and x P A, if cptx, yuq “ x for all y P Aztxu, then cpAq “ x.
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characterized by the asymmetry and acyclicity of the binary relation Fc of revealed-to-
follow (Yildiz, 2016, p. 594).19 Consider the choice function c : X Ñ X on X “ tx, y, zu

defined by
xyz , xz , yz , xy .

Always Chosen does not hold for c, hence c is not sequentially rationalizable, and it also
fails to be with status quo bias, rationalizable by game trees, and guided by a set of
routes. Furthermore, c violates exclusion consistency,20 thus is not rationalizable by a
post-dominance rationality procedure. Finally, c is not list rational, because Fc is not
asymmetric (xFc z and zFc x).

(b) Again, m ě 3 for models (vi), (vii), (viii), and (ix). We show that m ą 3 for
all of them. A choice with limited attention is characterized by WARP(LA) (Masatlioglu,
Nakajima, and Ozbay, 2012, p. 2193),21 whereas choices categorize-then-choose and those
consistent with basic rationalization theory are characterized by WWARP (Cherepanov,
Feddersen, and Sandroni, 2013, p. 780): both axioms always hold on three items. Over-
whelming choices are consistent with order rationalization theory, which rationalizes any
choice on three items. Finally, we prove m ď 4 for all these models. Let c : X Ñ X be the
choice on X “ tw, x, y, zu defined by

wxyz , wxy , wxz , wyz , xyz , wx , wy , wz , xy , xz , yz.

WARP(LA) fails for c (take A “ tx, y, zu), hence c it is not with limited attention. Moreover,
c is neither categorize-then-choose, nor consistent with basic rationalization theory, nor
overwhelming, because it does not satisfy WWARP.22

Table 1 displays ζpϵ,mq for the special cases m P t3, 4u and ϵ P t10%, 5%, 1%u.
19 For distinct x, y P X, xFc y holds if there is A P X such that either (i) cpAY tyuq “ x and (cptx, yuq “

y or cpAq ‰ x), or (ii) cpA Y tyuq ‰ x and (cptx, yuq “ x and cpAq “ x). Recall that acyclic means that
there are no distinct p ě 3 items x1 x2, . . . , xp P X such that x1Fc x2 Fc . . . Fc xnFc x1. (Note that ‘acyclic’
in Yildiz (2016) stands for ‘asymmetric and acyclic’.)

20 Take A “ tx, zu, a “ y, and A1 “ tx, yu.
21 A choice c : X Ñ X satisfies WARP(LA) if for any A P X , there is x˚ P A such that, for any B

containing x˚, if cpBq P A and cpBq ‰ cpBztx˚uq, then cpBq “ x˚.
22 Take w, z P tw, x, zu Ĺ X.
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ϵ m “ 3 m “ 4

0.1 19 5968
0.05 23 7762
0.01 35 11932

Table 1: A rough test for rationalizability of bounded rationality models. In the first column, three
values of ϵ are considered. In the other two columns, we compute the size ζpϵ,mq of the ground set
X for m equal to 3 and 4. The numbers in the second column apply to models (i), (ii), (iii), (iv),
(v), (ix), and (x) in Lemma 1, whereas the numbers in the third column apply to models (vi), (vii),
(viii), and (xi).

B Finer estimates
The values of ζpϵ,mq in Table 1 provide rough estimates of the minimum size ζpϵ,mq of the
ground set X such that the fraction of boundedly rationalizable choices on X is less than ϵ,
whenever the minimum size m of a counterexample is either 3 or 4. Using a combinatorial
approach, here we exhibit much finer estimates, substantially reducing — ceteris paribus

— the size of X (or, equivalently the value of ϵ). To that end, we introduce the following
notion:

Definition 5. Let X be a nonempty finite set of size n, and m P N such that 1 ď m ď n.
A collection F of subsets of X is an m-leveled almost disjoint family (a LADpmq family) if
|A| “ m for all A P F , and |AXB| ď 1 for any distinct A,B P F .

As said in Remark 3, the family pXjq
p
j“1 of menus considered in the proof of Lemma 4

may be any LADpmq family F such that |F | “ p. Arguing as in Corollary 3, we derive:

Corollary 4. Let P be an HFV property, and c a choice on a set Y of size m such that
P fails for it. Furthermore, let X be a set for which there is a LADpmq family F such

that |F | “
R

log ϵ

log
`

ϕpmq´m!
ϕpmq

˘

V

, with 0 ă ϵ ă 1. The fraction of choices on X satisfying P is

less than ϵ.

By virtue of Lemma 1, Corollary 4 applies to all models (i)-(xi). Since the larger a
LADpmq family is and the better the estimate becomes, we can remarkably improve the
numbers given in Table 1 by exhibiting suitable LADpmq families.

For instance, for ϵ “ 0.032 and m “ 3, we have
R

log 0.032

log
`

ϕp3q´3!
ϕp3q

˘

V

“ 12. Since each set X

of size |X| ě 9 has a LADp3q family of 12 menus,23 Corollary 4 yields that the fraction of
boundedly rationalizable choices on a set of size at least 9 is less than 3.2%: see Table 2.

23 To prove this, display the elements of X in a 3 ˆ 3 matrix, and take as subsets all rows, columns, and
diagonals (at 45˝ and ´45˝ degrees, in a determinant-like fashion).
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For another example, take ϵ “ 1.009 ¨ 10´8 and m “ 3, hence
R

log 1.009¨10´8

log
`

ϕp3q´3!
ϕp3q

˘

V

“ 64.

Any set X such that |X| ě 21 has a LADp3q family of 64 menus.24 By Corollary 4, the
probability of catching a boundedly rationalizable choice on a set of size 21 becomes trifling
(ă 0.000011%).

ϵ m “ 3

0.032 9
0.0000001009 21

Table 2: Refined estimates for m “ 3. The first column gives an upper bound for the probability
of having a choice justified by models (i), (ii), (iii), (iv), (v), (ix), and (x) on sets of size 9 and 21.

We conclude by providing better estimates for m “ 4. The next results are needed.

Lemma 7. WWARP does not hold for at least 3
5 of all choice functions on 4 elements.

Lemma 8. WARP(LA) does not hold for at least 5
12 of all choice functions on 4 elements.

Proof of Lemma 7. Let Y “ ta, b, c, du. Without loss of generality, suppose abcd.25 The
selection from the menus ta, bu, ta, cu, and ta, du can only be one of the following:

(1) exactly one of ab, ac, ad holds (which happens for a fraction 3
8 of all choices);

(2) exactly two of ab, ac, ad hold (which happens for a fraction 3
8 of all choices);

(3) all of ab, ac, ad hold (which happens for a fraction 1
8 choices);

(4) none of ab, ac, ad holds (which happens for a fraction 1
8 of all choices).

We examine the first three cases.

(1) Without loss of generality suppose ab. If either abc or abd holds, then WWARP fails,
and the fraction for which this happens is 1´

`

2
3

˘2
“ 5

9 .

(2) Without loss of generality suppose ab and ac hold. If either abc, or abc, or abd, or acd
hold, then WWARP fails, and the fraction for which this happens is 1´ 1

3 ¨
`

2
3

˘2
“ 23

27 .

(3) If either abc, or abc, or abd, or abd, or acd, or acd holds, then WWARP fails, and the
fraction for which this happens is 1´

`

1
3

˘3
“ 26

27 .

It follows that the total fraction of choices on Y such that WWARP fails is at least

3

8
¨
5

9
`

3

8
¨
23

27
`

1

8
¨
26

27
“

35

54
ą

3

5
,

24 The proof of this fact uses modular arithmetic, and is available upon request.
25 The argument given for these choices can be replicated for all choices such that abcd, or abcd, or abcd

holds. The percentage of choices is always the same for each of these distinct cases, so the same holds at a
global level.
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as claimed.

Proof of Lemma 8. Recall that c1 : X Ñ X satisfies WARP(LA) if and only if the relation
P on X, defined by xPy if there is A P X such that x “ c1pAq ‰ c1pAztyuq, is asymmetric
and acyclic (Masatlioglu, Nakajima, and Ozbay, 2012, Lemma 1 and Theorem 3). Let
Y “ ta, b, c, du. Without loss of generality, suppose abcd. The selection from the menus
ta, b, cu, ta, b, du, and ta, c, du can only one of the following:

(1) exactly one of abc, abd, acd holds (which happens for a fraction 4
9 of all choices);

(2) exactly two of abc, abd, acd hold (which happens for a fraction 2
9 of all choices);

(3) all of abc, abd, acd hold (which happens for a fraction 1
27 of all choices);

(4) none of abc, abd, acd holds (which happens for a fraction 8
27 of all choices).

Next, we obtain the fraction of choices for which WARP(LA) fails in (1) and (4).

(1) Without loss of generality, let abc. Note that aPc and aPb. Consider the selection
from ta, b, du and ta, c, du. Exactly one of the following subcases holds:

(1.1) abd and acd (which happens for a fraction 1
4 of all choices);

(1.2) abd and acd (which happens for a fraction 1
4 of all choices);

(1.3) abd and acd (which happens for a fraction 1
4 of all choices);

(1.4) abd and acd (which happens for a fraction 1
4 of all choices).

We examine the first three subcases.

(1.1) If bd or cd, then bPa or cPa, hence WARP(LA) fails. Within this subcase, the
fraction of choices for which this happens is 3

4 .
(1.2) If bd, then bPa, hence WARP(LA) fails. Within this subcase, the fraction of

choices for which this happens is 1
2 .

(1.3) If cd, then cPa, hence WARP(LA) fails. Within this subcase, the fraction of
choices for which this happens is 1

2 .

We conclude that, within case (1), the fraction of choices for which WARP(LA) fails
to hold is at least 3

16 `
1
8 `

1
8 “

7
16 .

(4) Note that aPd, aPc, and aPb. Without loss of generality, let abc. As in case (1),
consider the selection from ta, b, du and ta, c, du, for which exactly one of following
subcases happens:

(4.1) abd and acd (for a fraction 1
4 of choices);

(4.2) abd and acd (for a fraction 1
4 of choices);

(4.3) abd and acd (for a fraction 1
4 of choices);
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(4.4) abd and acd (for a fraction 1
4 of choices).

We examine separately each of the four subcases.

(4.1) If bd or cd, then bPa or cPa, so WARP(LA) fails (for a fraction 3
4).

(4.2) If bd or cd, then bPa or dPa, so WARP(LA) fails (for a fraction 3
4).

(4.3) If bd or cd, then dPa or cPa, so WARP(LA) fails (for a fraction 3
4).

(4.4) If bd or cd, then dPa, so WARP(LA) fails (for a fraction 3
4).

Thus, within case (2), the fraction for which WARP(LA) fails is at least 3
4 .

It follows that the total fraction of choices for which WARP(LA) fails is at least
4

9
¨
7

16
`

8

27
¨
3

4
“

5

12
,

as claimed.

By Remark 2, the number of choices on X of size n is pϕp4qqp ¨ θp4, nq. Lemma 7 yields
that the fraction of choices on X satisfying WWARP is less than p 25ϕp4qq

p
¨θp4,nq

pϕp4qqp¨θp4,nq
“

`

2
5

˘p.
Using Lemma 8, we can argue similarly for WARP(LA), and finally obtain:

Corollary 5. For any LADpmq family F of subsets of X such that |F | “ p,

• the fraction of choices on X satisfying WWARP is less than
`

2
5

˘p, and

• the fraction of choices on X satisfying WARP(LA) is less than
`

7
12

˘p.

Corollary 5 entails better estimates for models (vi), (vii), (viii), and (xi), which have
a minimal counterexample of size m “ 4. For instance, a set X such that |X| “ 28

has a LADp4q family of size 57. By Corollary 5, the probability of finding a choice that
is rationalizable by (vi), (viii), and (xi) on a set of cardinality 28 is less than

`

2
5

˘57
“

2.07 ¨ 10´23, whereas the probability of catching a choice on the same set explained by (vii)
is less than

`

7
12

˘57
“ 4.5 ¨ 10´14: see Table 3.

ϵ

|X| Weak WARP WARP(LA)
28 2.07 ¨ 10´23 4.5 ¨ 10´14

Table 3: Refined estimates for m “ 4. The last two columns give an upper bound for the probability
that a choice on X of size 28 is rationalizable by, respectively, models (vi)-(viii)-(xi) and model (vii).

Remark 5. The fraction ϵ of non-rationalizable choices on a ground set of cardinality
ζpϵ,mq, and the associated refinements discussed here are an ex-ante approximation of the
hit rate, as defined by Selten (1991, p. 194). This score, which gives the relative frequency
of correct predictions, is a component of a global measure of predictive success of a theory.

18



Starting from Afriat (1974), several attempts have been made to identify a measure of
rationality, which may take into account deviations of individual behavior from the max-
imization principle. In this respect, Apesteguia and Ballester (2017) define the so-called
swap index, which is the sum, across all the observed menus, of the number of alternatives
that must be swapped with the chosen one in order to obtain a choice rationalizable by the
linear order(s) maximizing this sum. Our numerical estimates may be seen as a benchmark
to investigate performances of rationality indices as the number of available grows larger
and larger.
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