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Ilke Aydogan† Löıc Berger‡ Vincent Théroude§

November 12, 2021

Abstract

We explore experimentally individual preferences under model uncertainty using

Ellsberg two-color urns of different sizes. We find that both (i) preferences for risk

over ambiguity and (ii) preferences among different ambiguous situations do depend

on the size of the urns considered. We define and use different notions of “more am-

biguous” and “more complex” to build hypotheses on what drives such preferences

under uncertainty. We show that disentangling the effects due to specific attitudes

towards ambiguity and complexity provide an explanation of the heterogeneity ob-

served in our data. Overall, our results highlight the importance of considering the

structure of model uncertainty for comparing different uncertain situations.
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1 Introduction

More often than not, the ex-ante information that a decision-maker (DM) has at

her disposal is not sufficient to single out a unique probability model (or distribu-

tion) to quantify the uncertainty over the relevant states of the world. Consequently,

most decisions are actually made in situations of ambiguity, where probabilities are

not (perfectly) known. In such situations, it may be convenient to decompose am-

biguity into different layers of analysis, among which the layers of risk and model

uncertainty (Hansen, 2014; Marinacci, 2015; Hansen and Marinacci, 2016; Aydo-

gan et al., 2020). Risk characterizes the uncertainty within a given probability

model and, as such, features an aleatory (or physical) type of uncertainty, which

is typically represented by an objective probability measure. In contrast, model

uncertainty characterizes the uncertainty across different probability models, thus

featuring an epistemic type of uncertainty, which can be quantified by subjective

probabilities.

Ellsberg’s (1961) classical thought experiments illustrate particularly well the

distinction between the layers of risk and model uncertainty. In his two-color prob-

lem, a decision maker decides to bet on a draw from one of two urns: a known urn

that contains 50 red and 50 black balls, and an unknown urn that contains 100 balls,

each of which is either red or black. In such a context, a risk is fully characterized

by a specific composition of the urn. Accordingly, the known urn is an instance

of risk only whereas model uncertainty is absent by construction. In contrast, the

unknown Ellsberg urn that contains 100 balls in it features both layers of model

uncertainty and risk: there is uncertainty across 101 possible compositions, each of

which represents a different risk. The widespread finding of ambiguity aversion in

Ellsberg-type experiments (i.e., the preference for betting on the known over the un-

known urn) indicates behavioral differences towards the layers of model uncertainty

and risk.1

In this paper, we provide an experimental investigation of preferences under

model uncertainty that characterizes Ellsberg urns. Although Ellsberg two-color

problem has been widely used for calibrating ambiguity attitudes in empirical stud-

ies (Trautmann and Van De Kuilen, 2015), a distinction is rarely made between urns

that contains different number of balls. However, the size of an unknown urn proves

critical from a theoretical point of view: it determines the characteristics of the set

of models to consider, and thus, implicitly, the degrees of ambiguity and complex-

ity of the situation. Such characteristics may, ultimately, matter in determining

1Various theories have been proposed to accommodate Ellsberg-type behaviors (e.g., Segal, 1987,
Gilboa and Schmeidler, 1989, Ghirardato et al., 2004, Klibanoff et al., 2005, Maccheroni et al., 2006,
and Seo, 2009; see also Gilboa and Marinacci, 2013, and Machina and Siniscalchi, 2014, for surveys).
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the DM’s preferences. Thus, in this paper, we investigate model uncertainty in

Ellsberg urns by comparing Ellsberg’s original ambiguous urn (N = 100), denoted

E100, with two extreme cases: (i) a (very) small-sized urn, E1, which contains only

one ball (N = 1), and (ii) a large-sized urn, E1000 made of 1000 balls (N = 1000).

E1 is extreme in the sense that the probability of drawing a red (or black) ball is ei-

ther 0% or 100%, with no intermediate probabilities within these bounds. E1000 is

the other extreme, presenting a very large number (1001) of potential compositions.

We use two types of relation to build testable predictions and analyze preferences

over different situations of model uncertainty. The first one is the more ambiguous

relation, whose alternative definitions have been proposed by Jewitt and Mukerji

(2017) and Izhakian (2020). Jewitt and Mukerji’s (2017) definition relies on a

specific class of preferences, whose elements come from a given family. In line with

their study, we consider two parametric families of preferences, namely (i) the α-

maxmin expected utility family and (ii) the smooth ambiguity family. For these

families, the degree of ambiguity depends, for (i), on the range (i.e., maximum

and minimum) of the the distribution of expected utilities induced by different sets

of probability models, and, for (ii), on its spread. On the other hand, the more

ambiguous relation of Izhakian (2020) relies on a measure of expected volatility

in probabilities. The second relation is based on the notion of complexity. We

propose two definitions of more complex that enable us to rank situations of model

uncertainty in terms of complexity by comparing directly their sets of potential

models. Our first definition equates the degree of complexity to the cardinality of

the set of potential models. Our second definition is based on a partial ordering of

the sets of potential models according to its coarseness (or fineness).

Our empirical results illustrate the usefulness of considering both relations of

more ambiguous and more complex when comparing different situations of model

uncertainty. In particular, we show that (1) the distinction between risk and Ells-

berg ambiguity depends on the underlying set of models considered; (2) there exists

preferences over Ellsberg urns of different sizes, with a tendency to prefer larger-

sized urns; and (3) the heterogeneity in size preferences can be explained by atti-

tudes towards the degree of ambiguity and degree of complexity of the situation.

Related investigations with Ellsberg urns have been conducted in other experi-

ments. Among them, the recent study of Filiz-Ozbay et al. (2021) is the closest to

ours. Whereas our study focus on the decomposition of risk and model uncertainty

to disentangle the roles of ambiguity and complexity induced by different composi-

tions in Ellsberg urns, Filiz-Ozbay et al. (2021) focus on preferences for the size of

the ambiguous urn and analyze the role of ratio bias. Although we do not explicitly

consider the ratio bias as in Filiz-Ozbay et al. (2021), we control for a potential de-
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nominator effect by comparing situations characterized by the same sets of potential

models but generated by urns containing different numbers of balls. Another study

close to ours is that of Chew et al. (2017). In their experiment, Chew et al. (2017)

provide the subjects with either no information (a situation called full ambiguity)

or partial information (a situation called partial ambiguity) regarding the possible

compositions of an Ellsberg urn with 100 balls. In contrast to Chew et al. (2017),

our experiment focuses on situations of full ambiguity (except when controlling for

the denominator effect). Finally, using alternative designs, the studies of Armantier

and Treich (2016) and Kovář́ık et al. (2016) highlight the role of complexity when

measuring ambiguity preferences. While those studies did not propose any formal

definition of complexity under ambiguity, we propose such definitions under model

uncertainty.

The paper is organized as follows. Section 2 presents our experimental design.

Section 3 outlines the theoretical framework we use to analyze the uncertain situa-

tions in terms of their degree of ambiguity and degree of complexity, and to build

testable hypotheses. We report our main findings in Section 4. We further dis-

cuss our design and findings in relation to previous studies in Section 5. Section 6

concludes.

2 Experimental design

We use a within-subject design to study individual choices under risk and Ells-

berg ambiguity. The experiment entails betting on the color of a ball drawn from

an urn in different situations. All situations entail a standard two-color Ellsberg

(1961) setting. The experiment used real monetary incentives.

2.1 The choice situations

The subjects in our experiment are confronted with five different uncertain situ-

ations. These situations are represented by urns containing balls that can be either

red or black. They are characterised as follows:

1. Risk (denoted R): the urn contains 50 red and 50 black balls;

2. Ellsberg’s ambiguity with 1 ball (denoted E1): the urn contains 1 ball, which

can be either red or black;

3. Ellsberg’s ambiguity with 100 balls (denoted E100): the urn contains 100

balls, each of which can either be red or black;

4. Ellsberg’s ambiguity with 1000 balls (denoted E1000): the urn contains 1000

balls, each of which can be either red or black.
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5. Partial ambiguity (denoted P100): the urn contains 100 balls that are either

all red or all black.

The urns used in situations R and E100 are the same as the ones used by Ellsberg

(1961) in his original two-color problem. Urns E1 and E1000 are similar, in spirit,

to E100 but contain, respectively, less (i.e., 1) and more (i.e., 1000) balls in total.

Finally, P100 is identical to E1, except for the number of balls contained in the

urn.2

A representation of these urns is given in Figure 1.

R E1 E100 E1000 P100

Figure 1: The Different Uncertain Situations Represented by Urns

Subjects were required to answer several questions involving bets on the color of

a ball drawn from each of these urns. For each of the five uncertain situations, the

subjects were given the choice of the color on which to bet and were offered e15

for a correct bet and e0 otherwise. We elicited direct preferences between betting

on one urn or the other using a random lottery pairs (RLP) design (Harrison and

Rutström, 2008).3

2.2 Procedure

The experiment was run on computers at the Bocconi Experimental Laboratory

for Social Sciences where 84 Bocconi University students participated. Four ses-

sions were organized with 19 to 24 subjects per session. Subjects were paid in cash

at the end of the experiment. Average earnings were approximately e14.5, includ-

ing a e5 participation fee. Each session lasted approximately one hour, including

instructions and payment. The experiment started with the experimental instruc-

tions, examples of the stimuli, and related comprehension questions. Complete

instructions are available in online Appendix S1.
2P100 also corresponds to one of the urns used in Chew et al. (2017) to study the notion of partial

ambiguity, which implicitly relies on the partial information available to pin down the potential probability
models describing the phenomenon of interest (see also Berger, 2021). In P100, the information available
is that all balls have the same color.

3In the context of another study, we also elicited the certainty equivalents (CEs) of each bet using
a price-list design. The order of the RLP and CE elicitations was randomized and no order effect was
detected. For details, see Online Appendix S3.
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Stimuli During the experiment, subjects faced five different uncertain situations,

represented by the urns described in Section 2.1. All the urns were constructed

before each session by an assistant, who was not present in the lab during the

experiment. Thus, no one in the room (including the experimenters) had more

information about the content of the urns than that described in the experimental

instructions. The subjects were told that they would have the opportunity to look

at the urns at the end of the experiment to check the truthfulness of the instructions.

We presented the different uncertain situations two-by-two in a randomized se-

quence and asked subjects the urn on which they prefer to bet (to win e15). After

they selected one of the two urns, the same question was asked again, but this time

with a slightly increased amount (e15.10) for a correct bet on the urn that was not

selected at the first stage (see Filiz-Ozbay et al., 2021). Subjects were then consid-

ered as strictly preferring one of the two urns if they chose it in both stages and as

indifferent if they reversed their choice in the second stage.4 In total, nine of the ten

possible binary choices over the five urns were presented to the subjects, resulting

in eighteen choice questions.5 Finally, at the end of the experiment (and before the

payment stage), the subjects answered a short survey with a few socio-economic

questions.

Payment and incentives Each subject received a e5 flat payment for taking part

to the experiment. In addition, they were paid depending on one of the decisions

they made in the experiment. A prior random incentive system was implemented to

determine the choice question that was used for determining the subjects’ payment

at the end of the experiment.6 After all the subjects answered all the questions, a

ball was drawn from the urn corresponding to the relevant choice question and the

subjects’ decision in that question was observed. Each subject was then paid the

amount corresponding to her decision. See online Appendix S1 for more details.

4Note that if a subject was indeed indifferent between the two bets in the first place, any ε > 0
prize increase would lead to a reversal in the second stage. Although we cannot rule out, theoretically,
the possibility of a strict, but low, preference for the urn initially chosen, which is then reversed by the
additional prize in the second stage, in our view, e0.10 the additional prize we used is sufficiently small
to distinguish strict preference from indifference.

5The binary choice between P100 and E1000 was not included as the preference between them was
not one of our main interests. See details in Section 3.

6Under this random incentive system, the randomization is performed before subjects begin answering
questions (Johnson et al., 2020). Such a prior incentive system aims to enhance isolation to minimize
potential biases, thereby preventing subjects from hedging over the randomization between problems (see
Baillon et al., 2014; for a demonstration of its incentive compatibility in Ellsberg-type experiments, and
Epstein and Halevy, 2019; for a recent application).
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3 Theoretical considerations

In this section, we outline different approaches that have been proposed in the

literature to differentiate ambiguous situations.

3.1 Setup

Let S denote a finite set of states of the world and C a set of consequences.

Formally, an act (or bet) is a function a : S → C mapping states into consequences.

The collection of all acts is denoted by A. In our case, each of the acts we consider

involves a bet on the color (red or black) of a ball drawn from an urn. An act

ai results in a consequence c ∈ {e15,e0} depending on which state of the world

si ∈ {red, black} is realized in i ∈ {R,E1, E100, E1000, P100}. The state space

considered consists of 25 states. Yet we restrict our attention to 5 payoff-relevant

events each describing whether the bet is correct or not in a given situation. We

consider a DM who has a complete and transitive preference relation ≿ over acts.7

Following Wald (1950), we assume that the DM knows that states are generated

by a probability model that is presumed to belong to a collection M , which is

taken as a datum of the decision problem. In our setup, each model describes a

possible composition of the urn. To ease the derivation of our predictions, we use

the following symmetry assumption.

Symmetry: For each act ai, the DM is indifferent to the color on which to bet

(red or black).

Such a symmetry assumption is common in the ambiguity literature and has been

supported empirically in various studies (e.g., Abdellaoui et al., 2011; Chew et al.,

2017; Epstein and Halevy, 2019; Aydogan et al., 2020).

3.2 Decomposing ambiguity into layers

Following Hansen (2014); Marinacci (2015), and Hansen and Marinacci (2016),

Ellsberg ambiguity may be decomposed into the layers of risk (uncertainty with

known probabilities) and model uncertainty (uncertainty about which probability

model should be used).8 A risk is typically characterized by a unique, objective

probability measure. For example, any known two-color urn (e.g., R) represents a

7As usual, ∼ denotes indifference and ≻ strict preference. In consequence, a ≿ b means that the DM
either strictly prefers act a to act b or is indifferent between the two.

8Note that, in most real-life situations, a third layer of uncertainty, known as model misspecification
(uncertainty about whether or not the correct model lies among the set of models considered) is also
present (see Aydogan et al., 2020). However, as all the situations considered in our experiment can be
analyzed in terms of risk and model uncertainty only, we abstract from model misspecification issues.
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risk, which may be expressed as the binary lottery xpy, yielding x with an objective

probability p and y otherwise (e.g., 150.50 in our experiment). The uncertainty

featured in the layer of risk has therefore an aleatory (or physical) nature, which

is due to the intrinsic randomness that states feature. Ambiguous urns, on the

contrary, are characterized by a multiplicity of possible probability distributions.

In principle, it is possible to posit a set M of potential models mp(s) describing

the likelihood of the different states. A second layer of uncertainty therefore arises

about which is the correct model to consider among the collection M = {mp}
(i.e., among all the the possible compositions of the urn). While each probability

model mp ≡ xpy is itself a given risk, the uncertainty in this second layer can no

longer be quantified objectively, and as such is said to have an epistemic nature. If

one can still form a probability measure over the possible urn compositions, such

probabilities are necessarily subjective, reflecting the degree of belief one has in each

possible model.

Table 1: Characteristics of the uncertain situations

Uncertain
situation

Number of
balls (N)

Set of models (M) Number of
models (|M |)

Volatility of
probabilities (℧2)a

R 100
{

50
100

}
1 0.000

E1 1
{
0
1 ,

1
1

}
2 0.250

E100 100
{

0
100 ,

1
100 , ...,

100
100

}
101 0.085

E1000 1000
{

0
1000 ,

1
1000 , ...,

1000
1000

}
1001 0.0835

P100 100
{

0
100 ,

100
100

}
2 0.250

Notes: a Assuming a uniform prior probability measure µ

The sets M of possible models to consider in the uncertain situations of our

experiment are summarized in Table 1 (in an abuse of notations, we let each model

mp ≡ xpy be fully characterized by its probability p). Notice that situations E1 and

P100 share the same set of models M , but differ in their total number of balls. On

the contrary, situations E100 and P100 have the same number of balls but differ in

terms of their set M .

In what follows, we present two types of relation that will be used to differentiate

ambiguous situations under the two-layer decomposition. These relations will allow

us to make predictions on the preferences over Ellsberg urns of different sizes (i.e.,

over R,E1, E100, and E1000). As the sets of models considered in E1 and P100

are the same, the approaches we follow do not make any distinction between these
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two situations. Thus, we attitubute the behavioral difference that exists between

P100 and E1 (if any) to a framing (denominator) effect, which we test in Section

4.4.

3.3 The more ambiguous relation

We now present two approaches that have recently proposed in the literature

to order the different situations of our experiment by their degree of ambiguity.

The first approach is based on the notion of more ambiguous of Jewitt and Mukerji

(2017). This notion allows for establishing a partial ordering among ambiguous

situations within a given class of preferences. As the more ambiguous relation

is based on the notion of more ambiguity averse, it is first essential to adopt a

normalization for ambiguity neutrality.

Subjective expected utility Following Ghirardato and Marinacci (2002), we con-

sider subjective expected utility (SEU) as a benchmark for ambiguity neutrality.9

Under SEU, it is assumed that the DM has a subjective prior probability measure

µ : 2M → [0, 1] quantifying the epistemic uncertainty in the second layer of model

uncertainty. The symmetry condition implies that the subjective probability distri-

bution µ over the set of probability models is symmetric. For example, for E1, the

symmetry condition implies that µ(0%) = µ(100%) = 0.5. The two-layer version of

SEU that has been axiomatized by Cerreia-Vioglio et al. (2013) takes the form:

VSEU(ai) =
∑

mp∈M

(∑
s∈S

u (ai(s)) mp(s)
)
µ(mp). (1)

In this expression, u is a von Neumann-Morgernstern utility function, translat-

ing economic consequences (measured in monetary terms) into utility levels. This

function captures risk attitudes. Model uncertainty is then addressed using the

subjective prior probability distribution µ that quantifies the DM’s belief about

the correct urn composition (and thus about p). Under this framework, the layers

of risk and model uncertainty are implicitly treated in the same way (Marinacci,

2015). In our case, this means that all the bets on the different urns are evaluated

similarly. For example, assuming a uniform prior µ, we have, in the case of a bet

yielding x = 15 if correct and y = 0 otherwise and after normalizing u(0) = 0:

9The choice of SEU is a minimal assumption: this preference intuitively embodies ambiguity neutrality
(even if it might not be the only one) and seems to be the most obvious one (Gilboa and Marinacci,
2013). This benchmark is moreover particularly well adapted for the ambiguity models we consider: SEU
corresponds to a linear ambiguity function ϕ in the smooth ambiguity model of Klibanoff et al. (2005), and
Marinacci (2002) shows that it is essentially without loss of generality to assume SEU as the benchmark
model for ambiguity neutrality for α-maxmin preferences (for more details, see Jewitt and Mukerji, 2017).
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VSEU(ai) =
∑
p

(
pu(15)

)
µ(p) =

1

2
u(15) ∀i. (2)

Thus, SEU predicts the following indifference pattern:

R ∼ E1 ∼ E100 ∼ E1000. (3)

Ambiguity averse preferences are then defined in relation to ambiguity neutrality.

Specifically, we will consider as ambiguity averse preferences those that are more

ambiguity averse than ambiguity neutrality.

The more ambiguous relation is defined as follows.

Definition: More Ambiguous (1) [Jewitt and Mukerji, 2017] Let P be a class

of preferences over a set A. Assume that a binary relation “more ambiguity averse”

is given, which is a strict partial order and that each≿∈ P is related to an ambiguity

neutral element of P . Given two acts f, g ∈ A, f is a more ambiguous act than g

if the following conditions are satisfied:

(i) if ≿ ∈ P is ambiguity neutral, then g ∼ f ;

(ii) for all ≿A, ≿B ∈ P such that ≿A is an ambiguity neutral preference and ≿B is

more (less) ambiguity averse than ≿A, we have g ≿B (≾B) f .

According to this definition, an act f is more ambiguous than an act g if an

ambiguity-averse DM prefers g to f , but an ambiguity-neutral DM is indifferent

between the acts. It should be clear, however, that this order of more ambiguous

arises on the back of a specific more ambiguity averse relation on preferences. In

what follows, we analyze two distinct families of preferences, the smooth ambiguity

family and the α-maxmin expected utility family.

Smooth ambiguity model Under the smooth ambiguity model proposed by Klibanoff

et al. (2005), the two layers of uncertainty are also quantified using a single probabil-

ity measure. However, this approach allows for a distinct treatment of the layers of

risk and model uncertainty. In particular, by letting a function ϕ ≡ v◦u−1 represent

the DM’s attitude towards ambiguity resulting from the composition of attitudes

towards model uncertainty (v) and risk (u), the smooth ambiguity criterion emerges

as a natural generalization of the SEU criterion as follows

Vsmooth(ai) =
∑

mp∈M

ϕ
(∑

s∈S

u (ai(s)) mp(s)
)
µ(mp). (4)
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Under this framework, ambiguity aversion is characterized by a concave function ϕ,

reflecting a more averse attitude towards the layer of model uncertainty than that of

risk (i.e., v is more concave than u). Under the smooth ambiguity model, ambiguity

aversion is thus characterized by an aversion to mean-preserving spreads (MPS) in

expected utilities induced by different urn compositions and the prior distribution

over them (Klibanoff et al., 2005).10

Under the smooth ambiguity family, the ambiguous situations presented in Table

1 can be ordered exclusively in terms of how much they are affected by ambiguity.

For example, if the prior probability measure µ is uniform, one can show that an

Ellsberg urn with n balls in it is more ambiguous than an urn with m balls as long

as n ≤ m (see Berger, 2021, Proposition 3).11 Thus, Ellsberg urns may be ranked

as follows under the smooth ambiguity preference:

E1000 ≻ E100 ≻ E1 ⇐⇒ R ≻ Ej ∀j ∈ {1, 100, 1000} (5)

Maxmin models The second family of preference we analyze originates in the

work of Gilboa and Schmeidler (1989). Their multiple priors approach relaxes the

assumption of model uncertainty being quantified by a single probability measure

µ and instead allows for the possibility of multiple priors belonging to a set C.12

Under the α-maxmin expected utility criterion of Ghirardato et al. (2004), both

the least favorable among all the classical subjective expected utilities determined

by each prior µ in C and the most favorable one appear respectively with weights

α and 1− α. The multiple priors maxmin model of Gilboa and Schmeidler (1989)

naturally emerges as a special case when α = 1, while the classical SEU criterion

is recovered when the set C contains only one element. When C consists of all

possible prior probability measures, we recover the criterion due to Hurwicz (1951)

when α ∈ (0, 1) and to Wald (1950) when α = 1. In what follows, this is the version

10Note that Nau (2006) and Ergin and Gul (2009) characterize representations that, at least in special
cases, can take the same representation as (4) and share the same interpretation as Klibanoff et al.’s
(2005) version. Note that an alternative interpretation of the evaluation of an act under the smooth
ambiguity model is the following: (1) in a first step, the DM computes, for each model mp, a certainty
equivalent c(mp) using her risk attitude captured by u, and (2) in a second step the DM evaluates the
overall prospect by computing the expected utility over the different certainty equivalents using her prior
µ and her attitude towards model uncertainty, captured by v. Model uncertainty aversion (i.e., concave v)
is thus equivalent to an aversion to mean-preserving spreads in the space of certainty equivalents induced
by each model.

11Note that when the identification of models is limited, there is no reason to assume a greater likeli-
hood of a particular urn composition, e.g., that the composition 90-10 in E100 is more likely than the
composition 60-40. A uniform prior measure ensures the same treatment for all compositions of the urn
that are physically possible. It may be justified on the grounds of a general symmetry of information
argument and is consistent with the principle of insufficient reason (Bernoulli, 1713; Laplace, 1814). As
mentioned by Izhakian (2020), it is also consistent with the idea of the simplest non-informative prior in
Bayesian probability (Bayes, 1763), and the principle of maximum entropy (Jaynes, 1957).

12This set of possible priors C incorporates both the attitude towards ambiguity and an information
component: a smaller set C reflecting, for example, both better information and/or less ambiguity aversion.
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we use. The utility of act i is

Vα−mxm(ai) = αmin
mp

(∑
s∈S

u (ai(s))mp(s)
)
+(1−α)max

mp

(∑
s∈S

u (ai(s))mp(s)
)

(6)

In this expression, α may be interpreted as an index of ambiguity attitude. For

example, α = 0 corresponds to a situation in which the DM is extremely opti-

mistic and considers only the best possible composition of the urn, while α = 1

corresponds to a DM being extremely pessimistic and considering only the worst

possible composition. Under the maxmin family, it is easy to see that, while the

Ellsberg situations are all more ambiguous than the risk R, we cannot order them

according to the more ambiguous relation, as they all share the same worst (p = 0)

and best (p = 1) possible models. Thus, irrespective of the degree of ambiguity

aversion, we have, under the maxmin models:

E1 ∼ E100 ∼ E1000 ∀α ∈ [0, 1] . (7)

Alternatively, a second approach for ordering situations by their degree of ambi-

guity has been recently proposed by Izhakian (2020). According to this appraoch,

the degree of ambiguity of an act ai may be quantified by its expected volatility of

probabilities

℧2 [ai] ≡
∑
s∈S

Eµ

[
mai

p (s)
]
Varµ

[
mai

p (s)
]
, (8)

where mai
p (s) is the probability of being in state s under model m, and Eµ [.] and

Varµ [.] are the expectation and variance operators, respectively, taken using the

prior probability measure µ. The measure ℧2 is claimed to be independent of atti-

tudes towards risk and ambiguity, and has the advantage of being easily computable.

The underlying decision-making model of this measure is the expected utility with

uncertain probabilities (EUUP) model of Izhakian (2017), in which the preferences

for ambiguity apply exclusively to the probabilities of events and are therefore out-

come independent. Under this framework, a more ambiguous relation is defined as

follows.

Definition: More Ambiguous (2) [Izhakian, 2020] Given two acts f, g ∈ A

under which the expected probabilities of each consequence c ∈ C are identical, f

is a more ambiguous act than g if and only if
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℧2 [f ] ≥ ℧2 [g] .

In words, an act g whose associated probabilities are on average less volatile than

an act f is deemed less ambiguous. In a framework where ambiguity aversion takes

the form of aversion to mean-preserving spreads in the space of probabilities, such

an act is moreover preferred by any ambiguity averse individual.

In the context of our experiment, it should be clear that the symmetry condi-

tion ensures that the expected probabilities of the consequenes are the identical:

Eµ

[
mai

p (s)
]
=

[∑
mp

mai
p (s)µ

(
mai

p

)]
= 0.5 for all i ∈ {R,E1, E100, E1000} and

all s ∈ {red,black}.13 The last column of Table 1 reports the expected volatility of

probabilities for the situations we consider. As can be observed, ℧2 is decreasing

with the number of balls in Ellsberg ambiguous urns. The more ambiguous (2)

relation thus predicts

E1000 ≻ E100 ≻ E1 ⇐⇒ R ≻ Ej ∀j ∈ {1, 100, 1000} (9)

which is similar to the more ambiguous (1) prediction under the smooth ambiguity

model, summarized in expression (5).

3.4 The more complex relation

Some recent studies have supported the idea that ambiguity aversion (as, for

example, captured by the ambiguity models presented above) may not be the only

underlying factor behind the patterns typically observed in Ellsberg choices (Ar-

mantier and Treich, 2016; Kovář́ık et al., 2016; Aydogan et al., 2019). Instead these

studies suggest that a separate notion of complexity aversion should be considered.

We are not aware of the existence of any formal economic theory capturing

preferences for simple situations over complex ones under ambiguity.14 Therefore,

we rely on set theory to characterize the complexity of the situations. Remember

that the DM’s information about the likelihoods of the different states (and thus

the outcome of the bet) is a priori modeled by the set M = {mp such that p ∈ I},
where p is the probability of winning (e.g., the probability that the ball drawn is red)

and I ⊆ [0, 1] is a set-theoretic modeling of information characterizing the chances

to make a correct bet. Assuming that the DM has information about M , her acts

needs to be measurable with respect to M without being allowed to condition the

13Note that, in line with Theorem 4 in Izhakian (2020), if the prior probability measure over the possible
urn compositions is uniform, the condition, in our case, simply becomes: f is more ambiguous than g if
and only if Varµ

[
mf

p

]
≥ Varµ

[
mg

p

]
, that is, the variance of the probabilities in f is higher than in g.

14Note that, under risk, an attempt is made by Puri (2018), who axiomatizes representations in which
the DM assesses a lottery less favorably if it contains more outcomes.
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choices on models that do not belong to M .

In analogy to what is done in the previous literature, the first definition we use

relates complexity to the cardinality of M .15

Definition: More Complex (1) Given two acts f, g ∈ A, f is a more complex

act than g if |Mf | ≥ |Mg|.

Under this intuitive definition, the degree of complexity of a situations depends

exclusively on the number of different potential models the situations entails.16 Us-

ing the more complex (1) relation, we can easily order the ambiguous situations

presented in Table 1. Specifically, situation R is the less complex as the set M is

singleton when the urn is not ambiguous. We directly observe that for ambiguous

Ellsberg urns there exists a monotonic relation between the number of balls con-

tained in the urn and the associated number of models, i.e., |M | = N + 1. Thus, if

people are complexity averse, in the sense that they have a preference for simpler

situations over more complex ones, we will observe:

R ≻ E1 ≻ E100 ≻ E1000. (10)

The second definition ofmore complex we present is based on the partial ordering

of the sets M according to a “coarser than” (“finer than”) relation.

Definition: More Complex (2) Assume that a binary relation “coarser than” is

given as follows: M is coarser than M ′ (and M ′ is finer than M) if I ′ ⊆ I. Given

two acts f, g ∈ A, f is a more complex act than g if Mf is coarser than Mg.

In words, this definition means that more complex information regarding the struc-

ture of ambiguity may be naturally modeled by a larger set of potential models. In

our case, the ordering between the sets is complete among the Ellsberg-type situa-

tion: IE1 ⊂ IE100 ⊂ IE1000, but the more complex (2) relation is silent in comparing

R and E1. Complexity averse individuals in the sense above will thus exhibit the

following pattern of preference:{
E1 ≻ E100 ≻ E1000

R ≻ Ej ∀j ∈ {100, 1000}
(11)

15Under risk, Sonsino et al. (2002); Moffatt et al. (2015) and Kovář́ık et al. (2016) define complexity as
the number of different outcomes of a lottery.

16Note that this notion of complexity coincides with what Einhorn and Hogarth (1985, p. 435) referred
to as the amount of ambiguity: “Moreover, the amount of ambiguity is an increasing function of the number
of distributions that are not ruled out (or made implausible) by one’s knowledge of the situation.”
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4 Results

4.1 Ambiguity attitudes with different Ellsberg urns

We first examine ambiguity attitudes by comparing situations of risk (i.e., when

M is singleton) and ambiguity à la Ellsberg (when M contains several elements).

Specifically, a subject is said to be ambiguity averse if she prefers the risky urn

R over the ambiguous urn (either E1, E100 or E1000), ambiguity seeking if she

prefers the ambiguous urn, and ambiguity neutral if she is indifferent between the

two. Table 2 presents the results.

Table 2: Ambiguity Attitudes (N = 84)

Ambiguity Preferences R vs. E1 R vs. E100 R vs. E1000

Ambiguity Aversion
32 50 42

(38.1%) (59.5%) (50%)

Ambiguity Neutrality
42 26 26

(50%) (31%) (31%)

Ambiguity Seeking
10 8 16

(11.9%) (9.5%) (19%)

We observe differences across the three ambiguous urns in the proportions of

ambiguity aversion (Cochran’s Q, p=0.009) and ambiguity neutrality (Cochran’s Q,

p=0.012). Specifically, ambiguity attitude measured with respect to E1 is different

from that measured with respect to E100 and E1000. In particular, ambiguity

aversion is the most common attitude under E100 and E1000, whereas there are

more ambiguity neutral subjects than ambiguity averse ones under E1.17 On the

contrary, we do not observe any difference in ambiguity attitudes when measured

with E100 and E1000.

We then test the association between Ellsberg ambiguity attitudes when using

different urns. The contingency tables are presented in Table 3. As can be ob-

served, we cannot reject the independence of ambiguity attitudes based on E1 from

those based on E100 and E1000 (Fischer’s exact test, p=0.178 and p=0.116, re-

spectively). This suggests that the ambiguity attitudes measured with respect to

a small-sized urn like E1 are distinct from those measured with respect to large-

sized urns like E100 and E1000. Overall, the most common preference pattern

is ambiguity neutrality under E1 together with ambiguity aversion under E100 or

E1000. In contrast, we reject the independence hypothesis between ambiguity at-

titudes based on E100 and E1000 (Fischer’s exact test, p=0.001), suggesting an

17The proportion of ambiguity neutrality is significantly lower under E100 and E1000 than under E1
(McNemar test, p=0.016 between E1 and E100, and p=0.018 between E1 and E1000), and the proportion
of ambiguity aversion is higher under E100 than under E1 (McNemar test, p=0.009).
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Table 3: Association between Ambiguity Attitudes

Part I: Ambiguity Attitudes using E1 and E100

Ambiguity preferences with E100

Ambiguity prefer-
ences with E1

Aversion Neutrality Seeking Total

Aversion 17 12 3 32

Neutrality 28 12 2 42

Seeking 5 2 3 10

Total 50 26 8 84
Independence test: Fischer’s exact test (2-sided): p = 0.178

Part II: Ambiguity Attitudes using E1 and E1000

Ambiguity preferences with E1000

Ambiguity prefer-
ences with E1

Aversion Neutrality Seeking Total

Aversion 11 11 10 32

Neutrality 26 11 5 42

Seeking 5 4 1 10

Total 42 26 16 84
Independence test: Fischer’s exact test (2-sided): p = 0.116

Part III: Ambiguity Attitudes using E100 and E1000

Ambiguity preferences with E1000

Ambiguity prefer-
ences with E100

Aversion Neutrality Seeking Total

Aversion 34 10 6 50

Neutrality 6 13 7 26

Seeking 2 3 3 8

Total 42 26 16 84
Independence test: Fischer’s exact test (2-sided): p = 0.001
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association between ambiguity attitudes measured with large-sized Ellsberg urns.

Overall, we summarize this first set of results as follows.

Result 1: Ambiguity attitudes measured with the small-sized urn E1 are different

and independent from those measured with the large-sized urns E100 and E1000.

In contrast, ambiguity attitudes measured with large-sized urns E100 and E1000 are

comparable and associated with each other.

4.2 Direct preferences over Ellsberg urns

In this section, we focus on comparing directly ambiguous Ellsberg urns of dif-

ferent size. Table 4 reports the results of the three pairwise comparisons between

E1, E100, and E1000. First, we observe that, for every pairwise comparison, the

Table 4: Size Preferences under Ambiguity

E1 vs. E100 E1 vs. E1000 E100 vs. E1000
Classification

(majority rule)

Prefer larger urn
29 39 30 38

(34.5%) (46.4%) (35.7%) (46.3%)

Indifferent
19 26 38 23

(22.6%) (31%) (45.2%) (28%)

Prefer smaller urn
36 19 16 21

(42.9%) (22.6%) (19%) (25.6%)

Total 84 84 84 82

majority of the subjects is not indifferent to the size of the urn on which to bet.

Second, focusing on strict preferences, we find that a preference for larger urns is

more common than for smaller urns in the comparisons E1 vs. E1000 and E100 vs.

E1000 (one-sample test of proportion, p=0.018 and p=0.039, respectively) whereas

the preference for the small urn in the comparison E1 vs. E100 is not significant

(one-sample test of proportion, p=0.385).

Next, we provide an individual level analysis by classifying subjects according

to their direct preferences over Ellsberg urns. Using a majority rule, we classify

subjects as exhibiting a preference for large-sized (small-sized) urns if they prefer

the larger (smaller) urn in at least two pairwise comparisons (out of three possible).

Similary, subjects are classified as indifferent if she exhibits indifference in at least

two out three pairwise comparisons. Two subjects whose preferences do not exhibit

any dominant pattern remain unclassified. The last column of Table 4 presents the

result of the classification. The proportion of subjects exhibiting a strict preference

for the size of ambiguous Ellsberg urns (either large- or small-sized urns) is 72%.

Among those subjects, we observe that the majority prefers larger urns over smaller
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ones (one-sample test of proportion, p=0.027), which is consistent with the results

obtained previously in the literature (Filiz-Ozbay et al., 2021). We summarize our

second set of findings as follows.

Result 2: The majority of the subjects exhibits preferences over Ellsberg urns with

different sizes, and larger urns tend to be preferred to smaller urns.

4.3 Explaining preferences over Ellsberg urns

We now turn to exploring our data in the light of the predictions presented

in Section 3. Following the “more ambiguous” and “more complex” definitions,

different patterns can be distinguished.

1. An observed preference for large-sized Ellsberg urns over small-sized ones can

be related either to (i) smooth ambiguity aversion (in which case the subject

exhibits ambiguity aversion), or to (ii) complexity seeking (in which case the

subject also exhibits ambiguity seeking).

2. An observed preference for small-sized Ellsberg urns over large-sized ones can

be related either to (i) complexity aversion (in which case the subject exhibits

ambiguity aversion), or to (ii) smooth ambiguity seeking (in which case the

subject exhibits ambiguity seeking).

3. Indifference towards the size of Ellsberg urns can be related either to (i) SEU

(in which case the subject is also ambiguity neutral), or to (ii) maxmin pref-

erences.

In what follows, we classify our subjects based on these theoretical patterns. To

do this, we look at the interaction between the preferences for large- or small-sized

Ellsberg urns and the ambiguity preferences. For the preferences over Ellsberg urns,

we use the individual level classification reported in the previous section, which is

based on the majority rule. For ambiguity preferences, we also use a majority rule

that classifies a subject as ambiguity averse (resp. seeking, neutral) if she exhibits

ambiguity aversion (seeking, neutrality) in at least two out of the three comparisons

between R and the Ellsberg urns E1, E100 and E1000.18 We do not include the

seven subjects whose preferences cannot be determined by the majority rules in the

analysis.

18Note that our definition of more complex (2) relies solely on ambiguity preferences comparing R with
E100 and E1000. While we use here the majority rule relying on all three Ellsberg urns based on definition
of more complex (1), we further report the cases where the subject would remain unclassified based on
more complex (2), specifically when the subject exhibits at the same time ambiguity averse and seeking
attitudes with respect to E100 and E1000 (e.g. R ≻ E100 & E1000 ≻ R).
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The results of this classification are reported in Table 5. In total, 63 out of

77 subjects (82%) are classified as behaving in accordance with one of the afore-

mentioned theoretical patterns (see highlighted cells in Table 5). First, we observe

that 42.9% (=27/63) of the classified subjects behave in accordance with either

the smooth or the maxmin ambiguity aversion hypothesis. Alternatively, 28.6%

(=18/63) of the classified subjects exhibit complexity aversion.

Table 5: Classification of Subjects Based on Ambiguity and Size Preferences

Ambiguity preferences
Preferences for
the size of Ells-
berg urns

Averse Neutral Seeking Total

Prefer larger urns 16
(20.8%)

[Smooth AA]

11
(14.3%)

7
(9.1%)

[Complexity
Seeker]

34
(44.15%)

Indifference 11
(14.3%)

[Maxmin AA]

11
(14.3%)

[SEU]

0
(0%)

[Maxmin AS]

22
(28.6%)

Prefer smaller urn 18
(23.4%)

[Complexity
Averse]

3
(3.9%)

0
(0%)

[Smooth AS]

21
(2.7%)

Total 45
(58.4%)

25
(32.5%)

7
(9.1%)

77

Interestingly, we also observe that 11.1% (=7/63) of the subjects are classified as

exhibiting complexity seeking,19 whereas we do not find any preferences consistent

with the smooth or maxmin ambiguity seeking hypotheses. Finally, the proportion

of subjects following the SEU hypothesis amounts to 17.5% (=11/63).

Result 3: Attitudes towards both ambiguity and complexity play a role in the het-

erogeneity of preferences over different Ellsberg urns.

4.4 Robustness analysis and further results

It may be argued that subjects could have been affected by other features.

Among others, the number of balls in the different uncertain situations may drive

some of our results. Ratio bias has been defined in Denes-Raj et al. (1995) as the

19Among 25 subjects who are classified as complexity averse or seeking, 22 of them were also consistent
with definition of more complex (2), i.e., not exhibiting any conflicting ambiguity attitudes with respect
to E100 and E1000.
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fact that subjects tend to consider odds more favorably when they are represented

by a ratio of larger (10 in 200) rather than smaller (1 in 20) absolute numbers.20

Among the reasons evoked to explain such a bias, denominator neglect has been

considered as crucial. Subjects tend to focus on numerator and consider only the

frequency of “success” and neglect the total frequency. In this section, we test the

potential confounding effect of the number of balls in the urns, which alters the

denominators of possible urn compositions. To check this effect, we consider the

situation P100. Recall that P100 has the same set of models as E1, but contains

different number of balls (i.e., 100 balls in P100 vs 1 ball in E1). On the contrary,

P100 has the same number of balls as E100, but not the same set of potential

models. In the absence of ratio bias, subjects should be indifferent between E1 and

P100, while they could exhibit preferences between E100 and P100.

Table 6 reports the association between ambiguity attitudes comparing R with

P100 and E1, respectively. As can be observed, the majority of the observations

Table 6: Association between Ambiguity Attitudes with E1 and P100

Ambiguity preferences with P100
Ambiguity pref-
erences with E1

Aversion Neutrality Seeking Total

Aversion 26 3 3 32

Neutrality 10 28 4 42

Seeking 4 3 3 10

Total 40 34 10 84
Independence test: Fischer’s exact test (2-sided): p < 0.001

(57 out of 84, 67.9%) is on the diagonal and the association between ambiguity

attitudes when measured with these two sources is highly significant. Although

the proportion of neutrality is somewhat higher and aversion lower when E1 is

considered rather than P100, the difference is not significant at 5% level (McNemar

test, p=0.074).

We then test for direct preferences between P100 and E1 and between P100

and E100. Table 7 reports the results. We observe that a large majority of subjects

(70.2%) shows indifference between P100 and E1. On the contrary, a majority of

subjects has a strict preference when P100 is compared to E100. These results

suggest that the effect solely due to the number of balls contained in the urn, if any,

is limited.

To further examine the robustness of our results testing the impacts of the

“more ambiguous” and “more complex” relations, while at the same time controlling

20First evidence of ratio bias has been found in Kirkpatrick and Epstein (1992). Ratio bias has been
document in different sciences such as medicine (e.g., Yamagishi, 1997) or political sciences (e.g., Pedersen,
2017).
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Table 7: Preferences for P100 against E1 and E100 (N = 84)

P100 vs. E1 P100 vs. E100

Prefer P100
10 34

(11.9%) (40.5%)

Indifferent
59 17

(70.2%) (20.2%)

Prefer Ellsberg urn
15 33

(17.9%) (39.3%)

for the differences in number of balls in the urns, we run a conditional logistic

regression analysis. The analysis is performed by pooling the data from the nine

binary comparisons included in the experiment. The independent variables are

the “degree of complexity”, measured by the cardinality of the set of models M

in accordance with the more complex (1) relation, and the “degree of ambiguity”,

measured by the expected volatility of probabilities in accordance with the more

ambiguous (2) relation. We control for the denominator effect using using the

variable “total number of balls” in the urns. To account for the potential non-

linearities in the impact due to the number of models and balls on choices, we use

the log of these variables.21 The results of the regressions are shown in Table 8.

Table 8: Conditional Logistic Regression

(1) (2)
Degree of complexity -0.114∗∗ -0.147∗∗∗

(0.037) (0.036)

Degree of ambiguity -4.574∗∗∗ -3.881∗∗∗

(0.806) (0.942)

Denominator effect (number of balls) 0.0708
(0.031)

Observations 938 938
Notes: The analysis consist of 18 data points (9 pairs of bets) for each of the 84
subjects. The indifferent observations are automatically dropped from the analysis
as the contribution of these observations to log-likelihood is zero. Robust standard
errors, cluster-corrected at individual level in parentheses, ∗ p < 0.05, ∗∗ p < 0.01,
∗∗∗ p < 0.001

Regression (1), which does not include control, indicates that more complex sources

(i.e. sources with a higher number of potential models) and more ambiguous sources

(i.e., sources with a higher spread in the potential models) are less preferred. This

result confirms the hypothesis that both complexity and ambiguity aversion are at

21The underlying assumption is that going from 1 model (resp. ball) to 2 models (balls) possibly has
a larger effect than going from 100 models (balls) to 101 models (balls). Note that, by choosing a log
transformation, we assume linearity over percentage changes. These assumptions are supported in our
estimations by both AIC and BIC scores.
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play comparing different urns. Regression (2) includes the number of balls in the

analysis. We find that controlling for the number of balls does not alter the impact

and significance of the regression coefficients. The coefficient of the number of balls

is positive, indicating that Ellsberg urns with higher number of balls tend to be more

preferred, although this effect is only marginally significant at 10% level (p=0.054).

Based on this analysis, we conclude that the main driver of preferences captured in

our experiment is due to the differences in the set of potential models rather than

to the differences in the number of balls in the urns. These results moreover are

robust to alternative prior measure µ (for futher details, see Appendix A).

5 Related experimental literature

Our article is closely related to a recent study by Filiz-Ozbay et al. (2021).

While both designs share certain common features (e.g., the comparison between

risky urns and Ellsbergs’ ambiguous urns of different sizes and the method used to

elicit preferences), the topic and therefore the analysis of the two studies differ. In

our paper, we show the importance of two features of urns (namely, complexity and

spread) on decision making while their study investigates preferences for the size of

the ambiguous urn in relation to modern ambiguity models and analyzes the role of

ratio bias. In this section, we reexamine the experiment of Filiz-Ozbay et al. (2021)

from the perspective of our analysis with degrees of ambiguity and complexity.22

Filiz-Ozbay et al. (2021) use binary choices to elicit preferences between different

urns. They consider three risky urns and three ambiguous urns with 2 balls, 10 balls

and 1000 balls (using our notation, R2, R10, R1000 and E2, E10 and E1000). They

elicit ambiguity preferences using the comparison between risky urns and ambiguous

urns of the same size (i.e., R2vsE2, R10vsE10 and R1000vsE1000) and elicit direct

size preferences by comparing E2vsE10, and E10vsE1000. To connect the observed

preferences to our theoretical predictions, we replicate our classification in Table

6 by using their data. Following the same procedures, we use a majority rule to

classify their subjects according to their ambiguity preferences and their preferences

towards the size of the urns. The results are in Table 9. Their data indicate

somewhat different patterns than ours. While we find heterogeneity in preferences

in our dataset indicating both complexity and ambiguity attitudes, in their data, we

find a large majority (60.8%) of smooth ambiguity averse agents but a very small

share of patterns suggeting complexity attitudes (5.4%). Altogether, the results

based on this dataset suggest that a majority of subjects seems to be spread averse

and indifferent to complexity.

22We kindly thank the authors of the study for having shared their data with us.
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Table 9: Classification of Subjects Based on Ambiguity and Size Preferences
in Filiz-Ozbay et al. (2021)

Ambiguity preferences
Preferences for
the size of Ells-
berg urns

Averse Neutral Seeking Total

Prefer larger urns 45
(60.8%)

[Smooth AA]

3
(4.05%)

2
(2.7%)

[Complexity
Seeker]

50
(67.6%)

Indifference 11
(14.9%)

[Maxmin AA]

10
(13.5%)

[SEU]

1
(1.35%)

[Maxmin AS]

22
(29.7%)

Prefer smaller urn 2
(2.7%)

[Complexity
Averse]

0
(0%)

0
(0%)

[Smooth AS]

2
(2.7%)

Total 58
(78.4%)

17.6
(4.05%)

3
(3.9%)

74

The differences between the two results might possibly be due to subtle differ-

ences in stimuli and design. While their data contains only 5 binary choices (3

measures of ambiguity preferences and 2 measures of direct size preferences),we

in our experiment had 9 binary choices (4 measures of ambiguity preferences, 3

measures of direct size preferences and 2 measures of framing). We think that the

variety of scenarios used in our experiment could allow for more heterogeneity in

preferences. We also believe that the urns under consideration in the two exper-

iments may also explain the difference in results. In particular, we compare one

small urn with two large urns (E1 and E100 + E1000), whereas they compare ei-

ther two small urns or one small urn and a large urn (E2 + E10 vs E1000). While

our measures (E1 vs E100 and E1 vs E1000) offer a more serious tradeoff between

complexity and spread, their measures (E2 vs E10 and E10 vs E1000) may have

made this tradeoff less salient.

Moreover, E1 is a very specific urn as it is at the same time the ambiguous urn

with the highest degree of spread and the minimal degree of complexity. In our

experiment, it is the only urn for which ambiguity aversion is less frequent than

ambiguity neutrality. Notably, in Filiz-Ozbay et al. (2021), in all the three ambigu-

ous urns, ambiguity aversion is always more frequent than ambiguity neutrality.

Furthermore, in our results 1 and 2, we show that the pattern observed with E1

differs from the pattern observed with E100 and E1000. Yet, the pattern with E2
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does not differ from the pattern observed with E10 and with E1000 in Filiz-Ozbay

et al. (2021). Altogether, this suggest that a E1 effect may exist and explain the

difference in results.

6 Concluding remarks

In this paper, we offer an original approach to study choices over Ellsbergs urns

based on (i) ambiguity preferences and (ii) complexity preferences. For ambigu-

ity, we use two existing definitions of “more ambiguous ” relation in the literature

(one based on Jewitt and Mukerji (2017) and another based on Izhakian (2020).

Furthermore, we propose two new definitions of complexity under model uncer-

tainty. The definitions provide us with ready-to-use measures, which are shown to

be useful while examining preferences under model uncertainty. Building on these

definitions, we are able to derive theoretical predictions about size preferences, and

experimentally test these predictions using ambiguous-Ellsberg-urns made of 1, 100

and 1000 balls. Our results show that subjects do not exhibit the same ambiguity

atittudes when preferences are measured with different sized ambiguous urns, and

they exhibit size preferences with a tendency to prefer larger urns to smaller ones.

Importantly, we observe that there exists strong heterogeneity of preferences over

Ellsberg urns and that both complexity and ambiguity attitudes are important fea-

tures for explaining those preferences. The tractable measures of ambiguity and

complexity used in this study in the Ellberg situations are expected to be useful in

contexts more general than the Ellsberg paradigm and help shedding more light on

the effect of those factors on decisions under uncertainty in future studies.
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Appendix

A Alternative prior measure

While assuming a uniform prior probability measure µ seems the most natural

way to proceed when the information available is limited to identify the correct urn

composition, we here investigate the robustness of our findings to alternative prior

measures. In particular, we study two new cases where the prior measure follows

either a binomial distribution or a hypergeometric distribution. Regarding a prior

measure that follows a binomialdistribution is equivalent to treating each ball in

the urn as being equally likely to be red or black. Hypergeometric prior can be seen

as picking all balls randomly from 2 jars made of N balls.

Column 2 of Table A.1 reports the expected volatility of probabilities ℧2 (of

drawing either a red or a black ball) under a binomial prior µ (as computed by

equation (8)) while column 3 reports ℧2 under a hypergeometric prior µ . Similar

to the uniform prior, ℧2 is decreasing with the number of balls in Ellsberg ambiguous

urns, thus leaving our predictions unchanged.

Table A.1: Degree of ambiguity under binomial prior

Uncertain situation Volatility of probabilities (℧2) Volatility of probabilities (℧2)
binomial prior hypergeometric prior

R 0.0000 0.0000

E1 0.2500 0.2500

E100 0.0025 0.00125

E1000 0.0025 0.0001

P100 0.2500 0.2500

We then replicate the analysis of Section 4.4. The results of the conditional

logistic regression are presented in Table A.2.

In line with what was previously reported using uniform priors, we observe that

more complex and more ambiguous sources are less preferred. We also find that

controlling for the number of balls does not alter the impact and significance of the

regression coefficients. The coefficient associated with the denominator effect is,

this time, significant.
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Table A.2: Conditional Logistic Regression: Binomial prior

Binomial Hypergeometric
(1) (2) (3) (4)

Degree of complexity -0.165∗∗∗ -0.199∗∗∗ -0.165∗∗∗ -0.200∗∗∗

(0.039) (0.038) (0.039) (0.038)

Degree of ambiguity -3.888∗∗∗ -3.098∗∗∗ -3.866∗∗∗ -3.072∗∗∗

(0.721) (0.815) (0.719) (0.811)

Denominator effect (number of balls) 0.095∗∗ 0.096∗∗

(0.035) (0.035)

Observations 938 938 938 938
Notes: The analysis consist of 18 data points (9 pairs of bets) for each of the 84 subjects.
The indifferent observations are automatically dropped from the analysis as the contribution
of these observations to log-likelihood is zero. Robust standard errors, cluster-corrected at
individual level in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Online Appendix

S1 Experimental details: Instructions

Welcome page and examples

1



2



3



4



5



Before starting the incentivized part of the experiment, we clarify how subjects

were going to be paid.
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7
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Every subject made decisions in 14 different scenarios in total (9 scenarios tak-

ing the form of random lottery pairs and 5 scenarios taking the form of certainty

equivalents). The order in which the type of scenarios appears is randomized.

Random lottery pairs

Each of the 9 scenarios presents two choice questions, presented in a sequence.

The order in which the scenario appear is randomized.

Question 1

9



Question 2 If Urn A is chosen first:

Question 2 If Urn B is chosen first:
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Certainty equivalents

Each of the 5 certainty equivalent scenarios is presented on two pages. Subjects

first choose their winning color and then indicate their decisions in the choice list.

The order in which the scenarios appear is randomized.

Page 1

19



Page 2

20



21
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S2 Order Effects

In Table S2.1, we report the results of the Fisher exact tests comparing the

choices made when the CE elicitation part appeared first and when the binary

choices appeared first. None of the tests is significantat 5%, suggesting that choices

made are not associated with the order of the task appearance.

Table S2.1: Attitudes measured with Certainty Equivalents

Pairwise
R R R R E1 E1 E100 E1 E100

comparisons
vs. vs. vs. vs. vs. vs. vs. vs. vs.
E1 E100 E1000 P100 E100 E1000 E1000 P100 P100

p-value 0.413 0.152 0.461 0.296 0.443 0.070 0.109 0.942 0.276
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S3 Certainty Equivalents data

A second set of questions enables us to elicit the certainty equivalents (CEs) of

the five uncertain situations. We used the following price-list design: for each un-

certain situation, subjects made 16 binary choices between the prospect of receiving

e15 if their bet was correct and receiving a sure amount of money ranging from

e15 to e0 (with a decrease of e1 between each choice). Subjects were expected to

choose the sure amount when it was higher than the CE of the uncertain situation

and to switch to preferring the bet as the sure amount decreased to the point that

is lower than the CE for the situation. We then use the switch point to compute

the CE: it corresponds to the midpoint of the indifference interval implied by the

switch point in that situation. Switching in the middle of the list implies a CE

equal to the expected payoff (e7.5). The order of the uncertain situations R, P100,

E100, E1, and E1000 was randomized.

Table ?? presents ambiguity attitudes measured with the CEs. Comparing the

results with those obtained in Table 2 , we note that the share of ambiguity neu-

tral in Part I (two sample proportion tests, ambiguity attitudes: measured with

$E1$, $p$=0.391; measured with $E100$, $p$=0.015; measured with $E1000$,
$p$=0.044) and indifferent in Part II is higher (two sample proportion tests, size

preferences: between $E1$ and $E100$, $p$<0.001; between $E1$ and $E1000$,
$p$=0.030; between $E100$ and $E1000$, $p$=0.015). It can be explained by the

lack of precision of CE (that goes in step of e1) and does not allow to detect weak

preferences.

Table S3.1: Ambiguity Attitudes measured with Certainty Equivalents

Size of the ambiguous urn

E1 E100 E1000
(N = 83) (N = 83) (N = 83)

Ambiguity Aversion
26 35 33

(31.3%) (42.2%) (41.25%)

Ambiguity Neutrality
47 41 37

(56.6%) (49.4%) (46.25%)

Ambiguity Seeking
10 7 10

(12.1%) (8.4%) (12.5%)
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Table S3.2: Size Preferences with Certainty Equivalents

Size of the urns

E1 vs. E100 E1 vs. E1000 E100 vs. E1000
(N = 83) (N = 80) (N = 81)

Prefer Larger Urn
19 21 18

(22.9%) (26.5%) (22.2%)

Indifferent
41 38 52

(49.4%) (47.5%) (64.2%)

Prefer Smaller Urn
23 21 11

(27.7%) (26.5%) (13.6%)
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