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Abstract

Accurate and precise measurements of the short-term effects of air pollution on

health play a key role in setting air quality standards. Yet, statistical power

calculations are rarely—if ever—carried out. We first collect estimates and

standard errors of all available articles found in the standard epidemiology

and economics literatures. We find that nearly half of them may suffer from

a low statistical power and could thereby produce statistically significant esti-

mates that are actually inflated. We then run simulations based on real data to

identify which parameters of research designs affect statistical power. Despite

their large sample sizes, we show that studies exploiting rare exogenous shocks

such as transport strikes or thermal inversions could have a very low statisti-

cal power, even for plausibly large effect sizes. Our simulation results indicate

that the observed discrepancy in the literature between instrumental variable

estimates and non-causal ones could be partly explained by the inherent impre-

cision of the two-stage least-squares estimator. We also provide evidence that

subgroup analysis on the elderly or children should be implemented with cau-

tion since the average number of events for an health outcome is a major driver

of power. Based on these findings, we build a series of recommendations for re-

searchers to evaluate the design of their study with respect to statistical power

issues.
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1 Introduction
From extreme events such as the London Fog of 1952 to the development of so-

phisticated time-series analyses, a vast scientific literature in epidemiology has es-

tablished that air pollution induces adverse health effects on the very short-term

(Schwartz 1994, Le Tertre et al. 2002, Bell et al. 2004, Di et al. 2017, Liu et al. 2019).

Increases in the concentration of several ambient air pollutants have been found

to be associated with small relative increases in the daily mortality and emergency

admissions for respiratory and cardiovascular causes (Samet et al. 2000, Shah et al.

2015, Orellano et al. 2020). All this evidence led to the implementation of public

policies such as air quality alerts to mitigate the acute effects of air pollutants. Ac-

curate estimates of the short-term health effects of air pollution are therefore crucial

as they directly inform public health policies.

With this objective in mind, researchers in economics and epidemiology have

addressed the issue of unmeasured confounding variables with causal inference

methods in the last decade (Dominici and Zigler 2017, Bind 2019). Newly obtained

results confirm the acute health effects of air pollution (Schwartz et al. 2015; 2018,

Deryugina et al. 2019). Yet, causal estimates are often larger than what would have

been predicted by the standard epidemiology literature. For instance, in Panel A of

Figure 1, we see that instrumental variable estimates of 9 studies in the causal in-

ference literature based on this method are always larger than naive ordinary least

squares estimates. This could arguably be explained by the fact that instrumental

variable strategies remove omitted variable bias and reduce attenuation bias com-

ing from classical measurement error in air pollution exposure. Panel B of Figure 1

however suggests an alternative explanation. For the 29 papers using causal infer-

ence methods found in this literature, we plot the standardized estimates against

the inverse of their standard errors, which is a proxy for a study’s precision. Large
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effect sizes are only found in imprecise studies and the more precise the study, the

smaller the effect size. The negative relationship between effect sizes and studies’

precision has also been observed in fields such as medicine, psychology and eco-

nomics (Button et al. 2013, Camerer et al. 2018, Schäfer and Schwarz 2019).

Figure 1: Naive versus Causal Estimates and the Deflation of Effect Sizes as Preci-
sion Increases.
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Notes: In Panel A, standardized estimates and their associated 95% confidence intervals are displayed
for the 9 articles of the causal inference literature based on instrumental variable strategies and
for which estimates from naive regressions are available. Triangles represent instrumental variable
estimates with dots are naive regression estimates. In panel B, standardized estimates of the 29
articles of the causal inference literature are plotted against the inverse of the standard errors, which
can been considered as a measure of precision. Both axes are on a log10 scale.

Following Ioannidis (2008b) and Gelman and Carlin (2014), the variation in

studies’ statistical power could explain the origin of this negative relationship but

also help understand why causal estimates are larger than those found in the epi-

demiology literature. Simply put, studies with low precision result in larger effect

sizes. Their statistical power is low and, to be statistically significant, their esti-

mates need to be large enough, at least 2 standard errors away from 0 at the 5%

significance level. Since statistically significant results are more likely to be pub-

lished, some estimates found in the literature may be inflated as they would come
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from a non-representative sample of the estimates, those large enough to be statis-

tically significant (Brodeur et al. 2016; 2020). The consequences of low statistical

power are not specific to studies on short-term health effects of air pollution but

may be particularly salient in this literature where the signal-to-noise ratio is often

low (Peng et al. 2006, Peng and Dominici 2008).

In this paper, we undertake the first empirical investigation to determine if stud-

ies on the short-term health effects of air pollution could be under-powered and

thereby produce inflated estimates. We start tackling this question by gathering a

unique corpus of about 600 studies based on associations and 29 articles that rely

on causal inference. For each of these papers, we run statistical power calculations

to assess whether the design of the study would be robust enough to confidently

detect an effect size smaller than the observed estimate (Gelman and Carlin 2014,

Ioannidis et al. 2017, Liu et al. 2017, Timm 2019). Using real data from the US

National Morbidity, Mortality, and Air Pollution Study (Samet et al. 2000), we then

implement simulations to identify the characteristics of research designs that drive

their statistical power and the inflation of statistically significant estimates (Gelman

et al. 2020, Altoè et al. 2020).

The results of our statistical power calculations show that research designs based

on associations and causal inference methods are similarly prone to statistical power

issues. Half of the studies in the two strands of the literature have a statistical power

below 80% to detect effect sizes 25% smaller than their observed estimates. In the

standard epidemioly literature, under-powered studies could produce statistically

significant estimates 2 times larger than true effect sizes. Our retrospective power

calculations also highlight a wide heterogeneity in the robustness of articles with

respect to statistical power issues. For example, if the true effect sizes are equal to

the ones predicted by the standard epidemiology literature, the statistical power of

studies using instrumental variable designs would range from 5% to 64%. In some
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studies, statistically significant estimates would be just 1.3 times larger than the

true effect sizes, while in others, the inflation factor could be as high as 41.

Our simulation results help understand why some research designs face statisti-

cal power issues. We first show that a very large number of observations is needed

for all causal inference methods to reach a sufficient statistical power. Regression

discontinuity designs based on air quality alerts rely on sample sizes that are too

small for statistically significant estimates not to be inflated. Second, we show that

the use of public transport strikes or thermal inversions as exogenous shocks on

air pollution could be problematic. These studies are based on rare events, which

in some cases represent less than 1% of the observations. The resulting statistical

power is very low, around 15%, and statistically significant estimates can exagger-

ate even large true effect sizes by a factor of 2.7. Third, we find that the average

daily count of cases of an health outcome is a key driver of statistical power for all

empirical strategies. Statistical significant estimates of the effects of air pollution on

the elderly or children can be very inflated since health outcomes for these groups

often have few daily cases.

Our article makes two contributions to the literature on the acute health effects

of air pollution. First, as highlighted by the replication crises in medicine, psy-

chology and experimental economics (Button et al. 2013, Collaboration et al. 2015,

Camerer et al. 2018), there is a crucial need to evaluate the deficiencies of current

statistical practices grounded in the null hypothesis significance testing framework

(Ziliak and McCloskey 2008b, Simonsohn et al. 2014, Smaldino and McElreath

2016, Greenland 2017, Christensen et al. 2019, Amrhein et al. 2019). Our paper

participates in the growing literature that uses retrospective power calculations to

evaluate the plausibility of published findings (Ioannidis 2008a, Gelman and Car-

lin 2014, Smaldino and McElreath 2016, Ioannidis et al. 2017, Ferraro and Shukla

2020, Stommes et al. 2021). To the best of our knowledge, this paper is the first to
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show how to carry out retrospective statistical power calculations for studies on air

pollution and human health. We also provide the first evidence that under-powered

studies are an actual issue in this field.

Second, except for standard models used in the epidemiology literature (Win-

quist et al. 2012), few statistical power analyses exist to help researchers improve

their study designs (Bhaskaran et al. 2013). This paper is the first to give concrete

recommendations to avoid statistical power issues for several research designs es-

timating the acute health effects of air pollution. Statisticians have long advocated

the use of fake-data simulations to flexibly evaluate the inference properties of sta-

tistical models (Gelman and Carlin 2014, Vasishth and Gelman 2019, Altoè et al.

2020, Gelman et al. 2020). In our paper, we follow this advice but rely instead on

real data since it is very complex to correctly simulate the relationships between am-

bient air pollution, weather parameters, calendar indicators and health outcomes.

Our article is more closely connected to three recent articles evaluating the type I

error rate and the lack of statistical power of several panel data models used to esti-

mate the impacts of public policies on mortality outcomes (Schell et al. 2018, Black

et al. 2019, Griffin et al. 2020). These simulations focus on event study designs

and treatment effects happening on a medium to long time scale. On the contrary,

our simulations gauge the capacity of reduced-form, instrumental variable and re-

gression discontinuity designs to estimate very short-run effects in the context of

high-frequency data.

Finally, we strive to make our analyses fully and easily reproducible to help

researchers implement retrospective power calculations and power simulations in

their own studies. We use state-of-the-art literate programming to explain and ren-

der all coding procedures in nicely formatted HTML documents (Allaire et al. 2018).

All replication and supplementary materials are available on this website.

In the following section, we implement a simple simulation exercise to show why
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statistically significant estimates exaggerate true effect sizes when studies have a low

statistical power. In section 3, we present our retrospective analysis of the literature.

In Section 4, we detail our simulation procedure to replicate empirical strategies.

We display the simulation results in section 5 and provide specific guidance on

study design in Section 6.

2 Background on Statistical Power, Type M

and S errors
In a seminal paper, Gelman and Carlin (2014) point out that researchers working in

the null hypothesis significance testing framework are often unaware that "statisti-

cally significant" estimates suffer from a winner’s curse in under-powered studies:

these estimates can largely overestimate true effect sizes and can even be of the op-

posite sign. In this section, we implement a simple simulation exercise to illustrate

these two counter-intuitive issues and explain why they could matter in studies on

the acute health effects of ambient air pollutants.

2.1 A Fictional Example

Imagine that a mad scientist is able to implement a randomized experiment to mea-

sure the short-term effects of air pollution on daily non-accidental mortality. The

experiment takes place in a major city over the 366 days of a leap year. The scientist

is able to increase concentration of particulate matter with a diameter below 2.5 µm

(PM2.5) by 10 µg/m3—a large shock equivalent to one standard deviation increase in

the concentration of PM2.5. Concretely, the scientist implements a complete experi-

ment where they randomly allocate half of the days to the treatment group and the

other half to the control group. They then measure the treatment effect of the inter-
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vention by computing the average difference in means between treated and control

outcomes: the estimate for the treatment effect is equal to 4 additional deaths and

is "statistically significant" at the 5% level, with a p-value of 0.04. The statistical sig-

nificance of the estimate fulfills the scientist expectations, who immediately starts

writing their paper. Had they not obtained a statistically significant estimate, they

might not have submitted their result.

Unfortunately for the scientist, we know what the true effect of the experiment is

since we created the data. In Table 1, we display the Science table where we observe

the pair of potential outcomes of each day, Yi(Wi = 0) and Yi(Wi = 1) (Rubin 1974).

Yi represents a daily count of non-accidental deaths and Wi the treatment assign-

ment, which is equal to 1 for treated units and 0 otherwise. We first simulated the

daily non-accidental mortality counts in the absence of treatment (i.e., the Y (0) col-

umn of Table 1), by drawing 366 observations from a negative binomial distribution

with a mean of 106 and a variance of 402. We chose the parameters to approximate

the distribution of non-accidental mortality counts in a large European city. We

then defined the counterfactual distribution of mortality by adding, on average, 1

extra death (i.e., the Y (1) column of Table 1).

Table 1: Science Table of the Experiment.

Day Index Yi(0) Yi(1) τ i Wi Yobs
i

1 122 124 +2 1 124
2 94 96 +2 1 96
3 96 98 +2 0 96
...

...
...

...
...

364 96 97 +1 0 96
365 98 98 +0 0 98
366 143 144 +1 1 144

Notes: This table displays the potential outcomes,
the unit-level treatment effect, the treatment status
and the observed outcomes for 6 of the 366 daily
units in the scientist’s experiment.
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This treatment effect size represents approximately a 1% increase in the mean of the

outcome1. Following the fundamental problem of causal inference, the daily count

of deaths the scientist observes is given by the equation: Y obs
i =Wi ×Yi(1)+(1−Wi)×

Yi(0). Treated units express their Yi(1) values and control units their Yi(0) values.

With a random assignment of the treatment, how come the statistically signifi-

cant estimate found by the scientist can be 4 times larger than the true treatment

effect size? Replicating many times the experiment can help understand why.

2.2 Defining Statistical Power, Type M and S errors

Figure 2: Estimates of the 10,000 Simulations.

-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9
10

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iteration

Estimate

Statistically Significant at the 5% Level False True

Notes: In Panel A, blue and red dots represent the point estimates of the 10,000 iterations of the
randomized experiment ran by the mad scientist. Red dots are statistically significant at the 5%
level while blue dots are not. The black solid line represents the true average effect of 1 additional
death.

In Figure 2, we plot the estimates of 10,000 iterations of the experiment. If

there is a large variation in the effect size of estimates, the average is reassuringly

1Note that the magnitude of this hypothetical effect is higher than what has been found in a
recent and large-scale study based on 625 cities. Liu et al. (2019) found that a 10 µg/m3 increase
in PM2.5 concentration was associated with a 0.68% (95% CI, 0.59 to 0.77) relative increase in daily
all-causes mortality.
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equal to the true treatment effect of 1 additional death. We can however see that

estimates close to the true effect size would not be statistically significant at the

5% level. In a world without publication bias, we could be confident that several

replications of this experiment would recover the true treatment effect. Unfortu-

nately, researchers are—despite recent changes in scientific practices and editorial

policies—not incited enough to publish replication exercises and not statistically

significant estimates. In a world with publication bias, only statistically significant

estimates would be made public. Out of the 10,000 estimates, about 800 are sta-

tistically significant at the 5% level. The statistical power of the experiment, which

can be defined as the probability to reject the null hypothesis when there is actually

an effect, is therefore equal to 8%. The scientist was therefore very lucky to get a

statistically significant estimate.

But with such a low statistical power, statistically significant estimates cannot

be trusted anymore. Two metrics, the average type M (for magnitude) error and the

probability to make a type S (for sign) error are useful to assess the negative con-

sequences of lacking statistical power. First, we can evaluate by how much statisti-

cally significant estimates are inflated compared to the true treatment effect size by

computing the average ratio of the absolute values of the statistically significant es-

timates over the true effect size (Gelman and Carlin 2014). With a statistical power

of 8%, the scientist would on average make a type M error equal to 5! Second, we

can notice that a non-negligible fraction of statistically significant estimates are of

the wrong sign in Figure 2: this proportion is the probability of making a type S

error (Gelman and Tuerlinckx 2000). For this experiment, a statistically significant

estimate has a 8% probability of being of the wrong sign!

Thus, if the scientist would like to estimate the effect of the experiment through

the prism of the statistical significance, they would need a larger number of obser-

vations: statistical power would then rise and conversely type M and S error would
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shrink.

2.3 Relevance for Studies on Acute Health Effects of Air Pollution

Type M and S errors are two concepts that highlight the danger of having too much

confidence in statistically significant estimates when studies are under-powered.

This issue is virtually absent from the literature but studies on the acute health ef-

fect of air pollution could be under-powered for several reasons. First, researchers

work with observational data and can often not control the sample size of their

studies due to data availability. Very few guidance on the drivers of studies’ sta-

tistical power actually exists (Winquist et al. 2012, Bhaskaran et al. 2013). More-

over, reaching a large statistical power could be challenging since estimated effect

sizes are remarkably small and the modeling of high-frequency variations in daily

mortality or emergency admission is difficult (Peng et al. 2006, Peng and Dominici

2008). Finally, we observe both in the standard epidemiology and the causal infer-

ence literatures a negative relationship between estimated effect sizes and studies’

precision. It is important to investigate if this pattern could be explained by im-

precise studies making type M errors (Ioannidis 2008b, Gelman and Carlin 2014,

Ioannidis et al. 2017, Ferraro and Shukla 2020).

3 Retrospective Analysis of the Literature
In this section, we first explain how to implement a retrospective analysis of a study.

Using different scenarios about the true effect sizes of studies found in the standard

epidemiology and causal inference literatures, we then assess to what extent they

could suffer from low statistical power issues.
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3.1 How to Run a Retrospective Analysis

Running a retrospective analysis only requires three metrics: the estimated effect,

its standard error and a guess about the true effect size of the treatment of inter-

est. Other parameters of the research design, such as the number of observations,

are assumed to be fixed. Using the closed-form expressions derived by Liu et al.

(2017) and their implementation in the R package retrodesign developed by Timm

(2019), we can then compute the statistical power, the average exaggeration factor

of statistically significant estimates and the probability that they are of the wrong

sign. The usefulness of this analysis however relies entirely on a credible guess of

the true effect size a study is trying to estimate. As the true effect is never observed,

researchers can have very different priors on its magnitude. They could therefore

assess differently the extent to which a study risks to suffer from statistical power

issues. To illustrate this tension, we provide below a case study showing how a

scientific discussion about effect sizes arises with a retrospective analysis.

In a flagship publication, Deryugina et al. (2019) instrument PM2.5 concentra-

tions with wind directions to estimate its effect on mortality, health care use, and

medical costs among the US elderly. They gathered 1,980,549 daily observations at

the county-level over the 1999–2013 period; it is one of the biggest sample sizes in

the literature. When the authors instrument PM2.5 with wind direction, they find

that “a 1 µg/m3 (about 10 percent of the mean) increase in PM2.5 exposure for one

day causes 0.69 additional deaths per million elderly individuals over the three-day

window that spans the day of the increase and the following two days”. The esti-

mate’s standard error is equal to 0.061. In Figure 3, we plot the statistical power,

the inflation factor of statistically significant estimates and the probability that they

are of the wrong sign as a function of hypothetical true effect sizes.

The estimate found by Deryugina et al. (2019) represents a relative increase
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Figure 3: Power, Type M and S Errors Curves for Deryugina et al. (2019).
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Notes: In each panel, a metric, such as the statistical power, the exaggeration ratio or the probabil-
ity to make a type S error, is plotted against the range of hypothetical effect sizes. The "IV" label
represents the value of the corresponding metric for an effect size equal to Deryugina et al. (2019)’s
two-stage least square estimate. The "Epidemiology" label stands for the estimate found in Di et al.
(2017), which is the epidemiology article most similar to Deryugina et al. (2019). The "OLS" label
corresponds to the estimate found by Deryugina et al. (2019) when the air pollutant is not instru-
mented.

of 0.18% in mortality. We labeled it as "IV" in Figure 3. Is this estimated effect

size large compared to those reported in the standard epidemiology literature? We

found a similar article to draw a comparison. Using a case-crossover design and

conditional logistic regression, Di et al. (2017) find that a 1 µg/m3 increase in PM2.5

is associated with a 0.105% relative increase in all-cause mortality in the Medicare

population from 2000 to 2012. The effect size found by Deryugina et al. (2019)

is larger than this estimate labeled as "Epidemiology" in Figure 3. If the estimate

found by Di et al. (2017) was actually the true effect size of PM2.5 on elderly mortal-

ity, the study of Deryugina et al. (2019) would have enough statistical power to per-

fectly avoid type M and S errors. Now, suppose that the true effect of the increase in

PM2.5 was 0.095 additional deaths per million elderly individuals—the estimate the

authors found with a "naive" multivariate regression model. The statistical power

would be 34%, the probability to make a type S error could be null but the overes-

timation factor would be on average equal to 1.7. Even with a sample size of nearly
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2 million observations, Deryugina et al. (2019) could make a non-negligible type

M error if the true effect size was the naive ordinary least square estimate. Yet, the

authors could argue that their instrumental variable strategy leads to a higher ef-

fect size as it overcomes unmeasured counfounding bias. Besides, for effect sizes

down to 0.182 additional deaths per million elderly individuals (a 0.05% relative

increase), their study has a very high statistical power and would not run into sub-

stantial type M error. A retrospective analysis is thus a very convenient way to think

about the statistical power of a study to accurately detect alternative effect sizes.

3.2 Standard Epidemiology Literature

Hundreds of papers have been published on the short-term health effects of air

pollution in epidemiology, medicine and public health journals. A large fraction

of articles are based on Poisson generalized additive models, which allow to flexi-

bly adjust for the temporal trend of health outcomes and for non-linear effects of

weather parameters. This literature spans over 20 years and has replicated analyses

in a large number of settings, providing crucial insights on the acute health effect

of air pollution. Advocates of causal methods would surely argue that these articles

could suffer from omitted variable biases. Even if they may be more biased, we find

it valuable to assess their potential statistical power issues and compare them with

causal inference papers.

To gather a corpus of relevant articles, we use the following search query on

PubMed and Scopus to select studies on the short-term health effects of air pollu-

tion:

’TITLE(("air pollution" OR "air quality" OR "particulate matter" OR "ozone"’,

’OR "nitrogen dioxide" OR "sulfur dioxide" OR "PM10" OR "PM2.5" OR’, ’ "carbon

dioxide" OR "carbon monoxide")’, ’AND ("emergency" OR "mortality" OR "stroke"

OR "cerebrovascular" OR’, ’"cardiovascular" OR "death" OR "hospitalization")’,

’AND NOT ("long term" OR "long-term")) AND "short term"’
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We retrieve the abstracts of 1834 articles. We then extract estimates and confidence

intervals from these abstracts using regular expressions (regex). We illustrate this

procedure using one sentence of a randomly selected article from this literature

review (Vichit-Vadakan et al. 2008):

“The excess risk for non-accidental mortality was 1.3% [95% confidence interval

(CI), 0.8–1.7] per 10 µg/m3 of PM10, with higher excess risks for cardiovascular

and above age 65 mortality of 1.9% (95% CI, 0.8–3.0) and 1.5% (95% CI, 0.9–2.1),

respectively.”

Our algorithm detects phrases such as “95% confidence interval (CI)” or “95%

CI” and looks for numbers directly before this phrase or after and in a confidence

interval-like format. Using this method, we retrieve 2666 estimates from 784 ab-

stracts. We then read these abstracts and filter out articles whose topic falls outside

of the scope of our literature review. Our corpus is thus composed of 668 articles for

which we detect 2155 estimates. Importantly, the set of articles considered is lim-

ited to those displaying confidence intervals and point estimates in their abstracts.

Based on this subset of articles, we implement a retrospective analysis in which

we check the overall sensitivity of studies for true effect sizes expressed as fraction

of observed estimates. Without carefully reading each article, we cannot make more

informed guesses about true effect sizes since estimates are expressed for different

increases in air pollution concentration. We think that our rough approach is still

valuable since a well-designed study should be able to detect effect sizes smaller

than the estimated one. For instance, if we find that a study has a statistical power of

30% when we assume that the true effect is 25% lower than the measured estimate,

it is likely that the study is not very robust to statistical power issues.

Our results for the standard epidemiology literature are at first sight reassuring.

If the true effect sizes of the studies were equal to 75% of estimated coefficients,

the median statistical power would be equal to 85% and the median exaggeration
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factor would be only 1.1. At least 50% of this literature does not seem to suffer

from substantial statistical power issues since their power would be above 80%.

Type S error is not an issue for most articles. Yet, even if the measured effect was

close to the true effect, a non-negligible proportion of articles would display low

statistical power and presents a substantial risk of making a type M error. About

47% of estimates would not reach the conventional 80% statistical power threshold

if the true effect was 75% the size of the measured effect. For these under-powered

studies, the average type M is 1.9 and the median 1.5. We also observe that the

proportion of under-powered studies has been stagnating since the 1990s, revealing

that practices regarding statistical power have not evolved over time.

Finally, skeptic researchers could rightly complain that assuming for each study

a true effect size equal to 75% of the estimate is arbitrary. To overcome this criticism,

we expand our review of the standard epidemiology literature by running statistical

power calculations based on two recent meta-analyses: one by Shah et al. (2015)

on mortality and emergency admission for stroke, and the other one by Orellano

et al. (2020) on broader causes of mortality. We use the meta-analysis estimates as

true effect sizes for the 290 studies gathered by Shah et al. (2015) and (Orellano

et al. 2020). This is the approach recommended by Gelman and Carlin (2014) and

Ioannidis et al. (2017) to make more informed guesses about true effect sizes. 60%

of studies in Orellano et al. (2020) have a statistical power below 80%. The median

exaggeration ratio of statistically significant estimate is equal to 2. The proportion

of under-powered studies is similar in Shah et al. (2015) but the median type M

error is equal to 3. With more informed guesses about true effect sizes, we clearly

see under-powered studies are an issue in the standard epidemiology literature.
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3.3 Causal Inference Literature

Using Google Scholar, PubMed, we search papers using causal inference methods

and investigating the short-term effects of air pollution on mortality or emergency

admission outcomes. Specifically, we only consider articles that exploit short-run

exogenous shocks such as air pollution alerts, public transport strikes, changes in

wind direction, thermal inversions, to name but a few. For instance, we did not

select articles on the impact of low emission or congestion pricing zones as they

evaluate health effects over several months or years. In Table 2, we display the

29 articles that match our search criteria. We read each article and retrieve the

estimates and standard errors for the main results: for simplicity, we only select one

of the main results discussed by the researchers. We also record the numbers of

observations and summary statistics on the outcome and independent variables to

compare studies by standardizing the estimated effect sizes.

16

https://scholar.google.com/
https://pubmed.ncbi.nlm.nih.gov/


Table 2: Our Corpus of Papers from the Causal Inference Literature.

Article Location Health Outcome Independent Variables Study Design

Arceo et al. (2016) Mexico City, Mexico Infant Mortality PM10, Thermal Inversion (IV) Instrumental Variable
Austin et al. (2020) Counties, USA Rates of Confirmed COVID-19 Deaths PM2.5 (air pollutant), Wind Direction (IV) Instrumental Variable
Baccini et al. (2017) Milan, Italy Non-Accidental Mortality Dummy for PM10 Concentration >To 40 µg/m³ Propensity Score Matching
Barwick et al.
(2018)

All Cities, China Number of Health Spending Transactions PM2.5, Spatial Spillovers of PM2.5 (IV) Instrumental Variable

Bauernschuster
et al. (2017)

5 Largest Cities, Ger-
many

Admissions for Abnormalities of Breathing (age below 5) PM10, Public Transport Strikes Dummy Difference in Differences

Beard et al. (2012) Salt Lake County, USA Emergency Visits For Asthma Thermal Inversions Time-stratified case-crossover
design

Chen et al. (2018) Toronto, Canada Asthma-Related Emergency Department Visits Air Quality Eligibility, Air Quality Altert Fuzzy Regression Discontinuity
Deryugina et al.
(2019)

Counties, USA All Causes of Mortality (Age 65+) PM2.5, Wind Direction (IV) Instrumental Variable

Ebenstein et al.
(2015)

2 Cities, Israel Hospital Admissions Due To Lung Illnesses PM10 (air pollutant), Sandstorms (IV) Instrumental Variable

Forastiere et al.
(2020)

Milan, Italy Non-Accidental Mortality Setting PM10 Daily Exposure Levels >To 40 µg/m³ To 40 Generalized Propensity Score

Giaccherini et al.
(2021)

Municipalities, Italy Respiratory Hospital Admission PM10, Public Transport Strikes Difference in Differences

Godzinski and
Suarez Castillo
(2019)

10 Cities, France Emergency Admissions for Upper Respiratory System
(Age 0-4)

CO, Public Transport Strikes Difference in Differences

Halliday et al.
(2019)

Hawaii, USA ER Admission for Pulmonary Outcomes PM2.5, SO2 Emissions From Kilauea Volcano and Wind
Direction (IV)

Instrumental Variable

He et al. (2016) 34 Urban Districts,
China

Monthly Standardized Mortality Rate PM10, Regulation and Traffic Control Status (IV) Instrumental Variable

He et al. (2020) China Monthly Number of Deaths for All-Causes PM2.5, Straw Burning (IV) Instrumental Variable
Isphording and Pes-
tel (2021)

Counties, Germany Mortality of Covid-19 Positive Male Patients (Age 80+) PM10, Wind direction (IV) Instrumental Variable

Jans et al. (2018) Sweden Children Health Care Visits for Respiratory Illness PM10, Thermal Inversion (IV) Reduced-Form
Jia and Ku (2019) South Korea Mortality Rates for Respiratory and Cardiovascular Dis-

eases
Dusty Days Times China’s AQI Reduced-Form

Kim et al. (2013) South Korea Hospital Admissions for Respiratory Illnesses PM10 (air pollutant), Average PM10 Level By Date (IV) Instrumental Variable
Knittel et al. (2016) California, USA Infant Mortality PM10, Road Traffic Flow and Weather variables (IV) Instrumental Variable
Moretti and Neidell
(2011)

South California, USA Hospital Admissions for Respiratory Illnesses O3, Vessel Traffic (IV) Instrumental Variable

Mullins and
Bharadwaj (2015)

Santiago Metropole,
Chile

Cumulative Deaths (age >64) PM10, Air quality Alerts Matching + Difference in Differ-
ences

Schlenker and
Walker (2016)

California, USA Acute Respiratory Hospitalization CO, Planes Taxi Time (IV) Instrumental Variable

Schwartz et al.
(2015)a

Boston, USA Non-Accidental Mortality PM2.5, Back Trajectories of PM2.5 (IV) Instrumental Variable

Schwartz et al.
(2017)

Boston, USA Non-Accidental Mortality PM2.5, Height Of Planetary Boundary Layer and Wind
Speed (IV)

Instrumental Variable

Schwartz et al.
(2018)

135 Cities, USA Non-Accidental Mortality PM2.5, Planetary Boundary Layer, Wind Speed, and Air
Pressure (IV)

Instrumental Variable

Sheldon and
Sankaran (2017)

Singapore Acute Upper Respiratory Tract Infections Pollutant Index, Indonesian Fire Radiative Power (IV) Instrumental Variable

Williams et al.
(2019)

USA Asthma Rescue Event PM2.5 Poisson fixed-effects models

Zhong et al. (2017) Beijing, China Ambulance Call Rate for Coronary Heart Problem NO2, Number 4 Day (IV) Instrumental Variable

Notes: For each study, we report its location, one of the health outcome analyzed, the independent variables (the air pollutant and in the case of an instrumental variable strategy, the instrument) and the
study design.



To evaluate potential statistical power issues in this literature, we first proceed

exactly as for the standard epidemiology literature. We compute the statistical

power, the exaggeration factor and the probability to get an estimate of the wrong

sign for all studies based on hypothetical true effect sizes expressed as decreasing

fraction of observed estimates. In Figure 4, each gray line represent the statistical

power and average type M error curves of an article. The blue lines represent the

average power and exaggeration factor of all causal inference studies.

Figure 4: Statistical Power and Type M Error of Causal Inference Studies.
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Notes: For each causal inference paper, we compute its statistical power and the average type M error
for decreasing effect sizes expressed as percentage reduction in observed estimates. Each gray line
represents a specific causal inference paper. The blue lines are the average of a metric for all causal
inference papers.

If the true effect size of each study was equal to 75% of the estimate, the median

statistical power would be about to 60% and the median Type M error would be

1.3. In the causal inference literature, at least half of studies have enough statis-

tical power so that statistically significant estimates are not inflated. In Figure 4,

we can however see that there is a wide heterogeneity in the robustness of studies

to statistical power issues—some of them are relatively well powered while others

run quickly into Type M error. A large share of studies in the literature would not
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have designs with enough statistical power to detect effects of half the size of their

observed estimates. In that scenario, the median statistical power would be about

40% and the median type M error would be 1.8. Overall, this comprehensive retro-

spective analysis of the literature reveals that some studies are under-powered and

could run into type M error. It may help explain why there is a large heterogeneity

in effect sizes across articles.

Again, expressing true effect sizes as decreasing fraction of observed estimates is

arbitrary. We also carry out another retrospective analysis where we take as true ef-

fect sizes the estimates that would be predicted using non-causal inference methods.

We do so for the subset of the 9 instrumental variables that also display estimates

in the case when the air pollutant concentration is not instrumented. Two reasons

are often advanced in the causal literature to explain the discrepancy between in-

strumented and non-instrumented estimates: (i) instrumental variables help over-

coming omitted variable bias and (ii) if the air pollution is measured with classical

error, instrumental variables also reduce the resulting attenuation bias. We think

that, for some studies, statistical power issues could also partly explain the observed

difference between causal and non-causal methods. In Table 3, we display the sta-

tistical power, the average type M error and the probability to make a type S error

for instrumental variable studies. For some studies, the statistical power of the in-

strumental variable strategy could be extremely low. This results in large type M

errors, which magnitude partially close the gap between instrumented and non-

instrumented estimates. Given this possibility, future research should carry out

quantitative bias analysis to explore the trade-off between using an instrumental

variable strategy to overcome omitted variable and attenuation biases and running

into a type M error due to low statistical power (Rosenbaum 2010, Dorie et al. 2016,

VanderWeele and Ding 2017, Cinelli and Hazlett 2020).
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Table 3: Retrospective Analysis of Instrumental Variable Papers Where Naive OLS
Estimates are Assumed to be True Effect Sizes.

Paper Power (%) Type S Error (%) Type M Error

Giaccherini et al. (2021) 5 43.3 40.7
Halliday et al. (2019) 6 16.6 6.9
Schlenker and Walker (2016) 7 13.8 6.1
Moretti and Neidell (2011) 11 3.7 3.5
Arceo et al. (2016) 12 2.4 3.1
Barwick et al. (2018) 23 0.3 2.1
Deryugina et al. (2019) 34 0.1 1.7
Ebenstein et al. (2015) 52 0 1.4
Schwartz et al. (2018) 64 0 1.3

Notes: For each study based on an instrumental variable strategy, we computed the statisti-
cal power, the average type M error and the probability to make a type S error using the non-
instrumented estimate as a guess for the true effect size.

4 Prospective Analysis of Causal Inference

Methods
The review of the standard epidemiology and causal literatures shows that some

articles could have produced inflated estimates on the short-term health effects of

air pollution. This analysis however does not allow us to clearly identify which

parameters of a study influence its statistical power. We therefore implement a

prospective analysis to overcome this limitation (Gelman and Carlin 2014, Altoè

et al. 2020). We run simulations based on real-data to emulate the main empirical

strategies found in the literature. Using real data avoid us the difficult task to model

the long-term and seasonal variations in health outcomes but also the specific effects

of weather variables such as temperature. We first explore how statistical power is

related to the treatment effect size, the number of observations, the proportion of

treated units and the distribution of the health outcome. We then try to replicate the

design of flagship publications to highlight their potential weaknesses with respect

to low statistical power issues.
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In this section, we describe how we implement these simulations. We start by

presenting the research designs we emulate, then briefly describe the data we rely

on and finally detail our simulation procedure.

4.1 Research Designs Emulated

Several empirical strategies have been implemented to estimate the short-term health

effects of air pollution. In our simulations, we try to emulate the main ones found

in the literature. The standard strategy consists in directly estimating the dose-

response between an air pollutant and an health outcome. In the epidemiology liter-

ature, researchers often rely on Poisson generalize additive models where the daily

count of an health outcome is regressed on the concentration of an air pollutant,

while flexibly adjusting for weather parameters, seasonal and long-term variations.

Because most causal methods are estimated with linear regression, our simulations

are instead based on ordinary least square estimation to approximate the warhorse

model used by epidemiologists.

The standard strategy could however be prone to omitted variable bias and mea-

surement error. A growing number of articles therefore exploit exogenous varia-

tions in air pollution. Most causal inference papers rely on instrumental variable

designs where the concentration of an air pollutant is instrumented by thermal in-

versions (Arceo et al. 2016), wind patterns (Schwartz et al. 2018, Deryugina et al.

2019, Isphording and Pestel 2021), extreme natural events such as sandstorms or

volcano eruptions (Ebenstein et al. 2015, Halliday et al. 2019), or variations in trans-

port traffic (Moretti and Neidell 2011, Knittel et al. 2016, Schlenker and Walker

2016). In our simulations, we simplify the instrument variable strategy by consid-

ering only binary instruments, such as the presence of a thermal inversion or not.

Besides, the occurrence of exogenous shocks is completely random.

We also emulate two other empirical strategies found in the causal inference
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literature. The first one consists in reduced-form or difference-in-differences strate-

gies where researchers do not instrument the impact of exogenous shocks on air

pollution. These articles mostly focus on public transport strikes (Bauernschuster

et al. 2017, Godzinski and Suarez Castillo 2019, Giaccherini et al. 2021). Again, we

make the simplifying assumption that these events are completely random in our

simulations. We do not model the resulting air pollution increases but only focus

on the impact of these shocks on health outcomes. The second strategy concerns

the analysis of air quality alerts using regression-discontinuity design (Chen et al.

2018). For simplification, we only model sharp designs where an air quality is al-

ways activated above a randomly chosen threshold.

4.2 Data

Our simulation exercises are based on a subset of the US National Morbidity, Mor-

tality, and Air Pollution Study (NMMAPS). The dataset has been exploited in sev-

eral major studies of the early 2000s to measure the short-term effects of ambient air

pollutants on mortality outcomes (Peng and Dominici 2008). It is publicly available

and allows us to work with increasing sample sizes for our simulations. Specifically,

we extracted daily data on 68 cities over the 1987-1997 period, which represent

4,018 observations per city, for a total sample size of 273,224 observations. For

each city, the average temperature (C°), the standardized concentration of carbon

monoxide (CO), and mortality counts for several causes are recorded. We choose to

work with CO as it is the air pollutant measured in most cities over the period. Less

than 5% of carbon monoxide concentrations and average temperature readings are

missing in the initial data set and we impute them using the chained random forest

algorithm provided by the missRanger package (Mayer 2019).
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4.3 Simulations Set-Up

Our simulation procedure follows 7 main steps:

1. Randomly raw a study period and a sample of cities.

2. For instrumental variable, reduced-form and regression-discontinuity designs,

randomly allocate days to exogenous shocks.

3. Create the counterfactual health outcome based on the treatment effect size.

4. Run the model of the empirical strategy.

5. Store the point estimate of interest and its standard error.

6. Repeat the procedure 1000 times.

7. Finally compute the statistical power, the exaggeration ratio of statistically

significant estimates and the probability that they are of the wrong sign.

In the first step, a study period is drawn at random. Then, a given number of

cities and days are sampled from the data. We consider the same study period for

each city. The second step only concerns causal inference methods. The drawing

procedure for days exposed to exogenous shocks is specific to the inference strategy

and the proportion of treated observations desired. For instrumental variable and

reduced-form strategies, the treatment status of each day is drawn from a Bernoulli

distribution with parameter equal to the proportion of exogenous shocks. For air

pollution alerts, we randomly draw a threshold from a uniform distribution and se-

lect a bandwidth such that it yields the correct proportion of treated observations.

In the third step, we add to the data the treatment effect size of air pollution or the

direct effect of an exogenous shock on an health outcome. For the reduced-form

and regression discontinuity designs, we follow the Neyman-Rubin causal frame-

work by creating a Science table (Rubin 1974). The observed values of a health

outcome in the dataset represent the potential outcomes of days when they are not

exposed to the treatment. To create the counterfactuals, we add a treatment effect
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drawn from a Poisson distribution with parameter corresponding to the effect size.

For the standard regression approach, we first estimate the model and then gener-

ate fake observations of a health outcome based on the estimated coefficients (Peng

et al. 2006). The treatment effect size is added to the data by modifying the value

of the air pollution coefficient. For the instrumental variable strategy, we use the

same method as for the standard regression approach but add in the first-stage the

effect size of the instrument on the air pollutant. We then estimate a two-stage least

squares model, modify the coefficient for the effects of the air pollutant on a health

outcome, and finally generate the fake observations of the health outcome.

5 Results
In this section, we first display how statistical power and the inflation of statistically

significant estimates evolve with each study’s parameter. We then provide results

on statistical power issues for several flagship publications.

5.1 Evolution of Power, Type M and S Errors with Study Parame-

ters

First, we analyze how statistical power, type M and S errors are affected by the value

of different study parameters. To do so, we set baseline values for these parameters

and vary the value of each of them one by one. This enables us to get a sense of the

impact of each parameter, other things being equal. The baseline parameters are

such that:

• The sample size is equal to 100,000 observations (2500 days × 40 cities).

• The effect size of air pollution or an exogenous shock is equal to a 1% relative

increase in an health outcome.
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• The proportion of exogenous shocks represents 50% of observations. For air

pollution alerts analyzed with regression discontinue designs, we choose a

smaller proportion of treated units: 10%.

• The health outcome is the total daily number of non-accidental deaths. It is

the health outcome with the largest average number of counts—the average

daily mean is equal to 23 cases.

For all statistical models, we adjust for temperature, temperature squared, city and

calendar (weekday, month, year, month×year) fixed effects. We also repeat the sim-

ulations for a smaller sample size of 10,000 observations.

Sample Size

As shown in Figure 5, we obviously find that, for all identification methods, statis-

tical power increases and type M error decreases with the number of observations.

Figure 5: Evolution of Type M Error against Sample Size.
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Notes: The true effect size is a 1% relative increase in the health outcome. The health outcome used
in the simulations is the total number of non-accidental deaths. The proportion of exogenous units
is 50% for instrumental variable and reduced-form designs.

Yet, statistical power and type M error issues arise even for a large number of obser-

vations. For a sample size of 40,000 observations, an instrumental variable strategy
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would only have a statistical power of 54% and would overestimate the true effect

by a factor of 1.4. On the contrary, a standard regression strategy is much less prone

to power issues than the instrumental variable strategy. This is explained by the fact

that the variance of the two stage least-square estimator is larger than the variance

of the ordinary least square estimator. In our simulations, we also note that, for all

identification method, Type S error is not a problem for any sample sizes.

Effect Size

The second unsurprising result of our simulations is that the larger the effect size,

the larger the power and the lower type M and S errors are. With our advantageous

baseline parameters, statistical power issues however start to appear in instrumen-

tal variable and regression discontinuity designs for effect sizes below 1%. For in-

stance, for an effect of 0.5%, the average type M error is about 1.7. Such effect sizes

are similar to those sometimes found in the standard epidemiology literature. As

for results on sample sizes, standard regression and reduced-form strategies suffer

less from power issues, even for small effects.

Proportion of Exogenous Shocks

The link between the proportion of exogenous shocks and statistical power might

be less known to researchers. In Figure 6, we see that the statistical power increases

with higher proportions of treated units for instrumental variable, regression dis-

continuity and reduced-form designs. As in the case of randomized controlled tri-

als, the precision of studies will we be maximized when half of the observations are

exposed to the treatment of interest.

Conversely, as shown in Figure 7, the average Type M error increases as the propor-

tion of exogenous shocks decreases.

Air pollution alerts, thermal inversion or transportation strikes are however rare
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Figure 6: Evolution of Statistical Power with the Proportion of Exogenous Shocks.
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Notes: The true effect size is a 1% relative increase in the health outcome. The health outcome used
in the simulations is the total number of non-accidental deaths.

Figure 7: Evolution of Type M Error with the Proportion of Exogenous Shocks.

Discontinuity Design Reduced-Form Instrumental Variable
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Notes: The true effect size is a 1% relative increase in the health outcome. The health outcome used
in the simulations is the total number of non-accidental deaths.

events. They can represent less than 5% of the observations in some studies. With

a dataset of 10,000 observations, the average type M error is 2.7 for reduced-form

strategies. The causal inference literature might therefore be particularly prone to

type M error due to a very low proportion of treated units, even though sample sizes
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are often large.

Average Count of Cases of the Health Outcome

Perhaps less known to economists than the influence of sample and effect sizes, the

average count of cases also critically affects statistical power. For instance, a 1% in-

crease in the number of deaths in a setting where there are only 2 deaths per day cor-

responds to rare additional deaths that might therefore be more difficult to detect.

To emulate situations with various number of cases, we consider three different out-

come variables, with different counts of cases: the total number of non-accidental

deaths (daily mean ' 23), the total number of respiratory deaths (daily mean ' 2)

and the number of chronic obstructive pulmonary disease cases for people aged be-

tween 65 and 75 (daily mean ' 0.3). With baseline parameters and in the case of the

large dataset, we find that statistical power is close to 100% when empirical strate-

gies target a 1% increase in the total number of non-accidental deaths. However,

statistical power quickly drops when the average count of cases decreases. For in-

stance, an instrumental variable strategy has only 16% of statistical power to detect

an increase by 1% in respiratory deaths. The average type M error is then equal to

2.4. For chronic obstructive pulmonary deaths, the situation is even worse, with an

average type M error of 5.9. Studies with a small count of cases may therefore lead

to extreme statistical power issues.

Issues Specific to the Instrumental Variable Design

For instrumental variable strategies, we also analyze how the statistical power is af-

fected by the strength of the instrument. In our simulations, we define the strength

of the instrument as the standardize effect size on the air pollutant concentration.

A strength equals to 0.2 means that the instrument increases the concentration by

0.2 standard deviation.
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Figure 8: Evolution of Type M Error with the Strength of the Instrumental Variable.
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Notes: The true effect size is a 1% relative increase in the health outcome. The health outcome used
in the simulations is the total number of non-accidental deaths. Half of the observations are exposed
to exogenous shocks. The instrument increases the air pollution concentration by 0.5 standard devi-
ation.

As visible in Figure 8, we find that statistical power collapses and type M er-

ror soars when the instrument’s strength decreases. Importantly, this issue arises

for rather large instrument’s strengths. Even in the case of the large data set with

100,000 observations, an instrumental variable’s strength of 0.2, and effect size of

a 1% increase in the health outcome, statistical power is only 23% and the average

type M error is 2. This statistical power issue arises for a F-statistics of 1278! A

large F-statistic could therefore hide a weak instrumental variable that results in a

low statistical power.

5.2 Simulating Flagship Studies

The simulation results of the previous section help build the intuition for the pa-

rameters influencing the statistical power of studies. Yet, they represent an ideal set-

ting, with relatively large sample size, proportion of treated units, outcome counts

and instrumental variable strength. These parameters may not perfectly represent
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actual studies. For each causal inference method, we therefore consider a realistic

set of parameters based on examples from the literature. We then vary the value of

key parameters one by one in order to see what could be changed in each study to

avoid running into power issues.

Public Transport strikes

Public transport strikes are unique but rare exogenous events where air pollution

increases. Even in a large data set, with several cities and a long study period,

the proportion of treated days might be very small. For instance, Bauernschuster

et al. (2017) investigate the effect of public transport strikes on air pollution and

emergency admission in the five biggest German cities over a period of 6 years. The

sample size of the study is equal to 11,000 observations but there are only 45 1-day

strikes. This study could be prone to statistical power issues since the proportion

of treated units is 0.4%. We thus try to simulate with our data a similar design. In

our baseline simulation, we set as the true effect size the point estimate found by

Bauernschuster et al. (2017): days with strikes see an 11% relative increase in the

health outcome of interest. The average count of cases for our health outcome—the

total number of respiratory deaths–is however 3 times larger than the one in their

study, which is equal to 0.69.

In the baseline scenario, we find that the statistical power is only 15% and the

average type M error is 2.7. If the researchers had looked at the effect for an health

outcome with an average of 23 cases per day, there would however be no statistical

power issues. The effect size found by the authors could nonetheless be argued to

be a very large increase in an health outcome. If the true effect was only 5% and the

average count of the health outcome was 23, there would still be a substantial risk

to overestimate statistically significant estimates by a factor of 1.8! Estimating the

effects of rare exogenous events on health outcomes with few cases seem therefore
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difficult.

Air pollution Alerts

Air pollution alerts are also rare events. Contrary to public transport strikes or

thermal inversions, their effects are estimated using regression discontinuity design.

Only observations closed to the air quality threshold are included in the analysis.

As a consequence, the effective sample size may end up being particularly small.

For instance, in Chen et al. (2018), while the initial sample size is equal to 3652

observations, the effective sample size is only of 143 (100 control observations and

43 treated ones). The proportion of treated observation is 1.2%. With our data, we

try to approximate the setting of Chen et al. (2018). In the baseline scenario, we

sample one city with a time period of 3652 days and randomly allocate to treatment

1.2% of observations. We also consider a true effect size of 12%, as found in the

study. The average number of cases of their health outcome is 26 cases per day. In

our simulations, we use the total number of non-accidental deaths as our outcome

variable since the daily mean is equal to 23 deaths.

In the baseline scenario, we find that the statistical power is only 10% and the

average type M error is 4.6. If we consider smaller true effect sizes, type M error

shoots up and power collapses. As a consequence, we cannot put too much confi-

dence in reported estimates from studies with such a small sample size and few air

quality alerts.

Instrumenting Air Pollution

Finally, we investigate the most common strategies used in the causal inference lit-

erature, which are based on instrumental variables. These papers often present very

large data sets. For instance Schwartz et al. (2018) gathered 591,570 observations

(135 cities with a length of study of approximately 4382 days). In this study, air
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pollution is instrumented with a complex mix of variables and we cannot easily ob-

serve the proportion of treated units. The effect size found by the authors is equal to

a 1.5% relative increase in an health outcome with an average daily number of cases

equal to 23. In our simulations, we therefore assume that half of the observations

are exposed to exogenous shocks. We only vary the strength of the instrument and

use the total number of non-accidental deaths as the outcome variable. Our data set

being smaller than the one used in the study, we only consider 2500 days and 40

cities.

If the instrumental variable increases air pollution concentration by 0.5 standard

deviation, we find a statistical power of nearly 100% and an average type M error

of 1. Yet, for smaller values of the instrument’s strength, statistical power rapidly

decreases. For an instrument’s strength of 0.2, the statistical power is 48% and the

average type M error is 1.4. For a strength of 0.1, power is only 16% and the average

type M error is 2.6! In these two scenarios, the values of the F-statistic remain

extremely large, with respective values equal to 1287 and 320. A large F-statistic

can be a poor indicator of statistical power issues.

6 Discussion

“I think that when we know that we

actually do live in uncertainty, then

we ought to admit it."
— Richard P. Feynman

Our findings should make us worried about statistical power issues when we

are trying to estimate the acute health effects of air pollution. Our retrospective

analysis of the literature suggests that under-powered studies with inflated effect

sizes could be an actual issue both in the standard epidemiology and the causal
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inference literatures. We thus recommend to adopt retrospective calculations since

they are very easy to implement and force us to reflect on the range of plausible

effect sizes we are trying to estimate.

Unfortunately, a retrospective analysis will not help researchers understand which

parameters of the research design influence the statistical power of their studies.

Our prospective analysis, using simulations based on real-data, fills this gap and

leads to issue four warnings. First, sample size matters for all causal inference meth-

ods but especially for the regression-discontinuity design applied to air pollution

alerts. Given the sample size its entails, we advise researchers to interpret findings

with extra care as type M error can be extremely large, even for a large guess about

the true effect size. Second, despite their large sample sizes, researchers exploiting

rare exogenous shocks such as transport strikes should be aware that the small pro-

portion of exogenous shocks observed in their studies can lead to a dramatically low

statistical power. Third, although it is well-known that two-stage least square esti-

mates are inherently less precise than ordinary least square estimates, it also makes

instrumental variable strategies more prone to type M error. If one thinks that omit-

ted variable and attenuation biases are small, the benefits of using an instrumental

variable strategy could be questioned. The trade-off between targeting an unbiased

estimate with causal inference method and the risk of running into a type M error

could be a fruitful area of research for quantitative bias analysis (Rosenbaum 2010,

Dorie et al. 2016, VanderWeele and Ding 2017, Cinelli and Hazlett 2020). Fourth,

the power of all research designs in the literature is driven by the average count

of the health outcome. Many articles investigate the acute effects of air pollution

for specific groups such as children and the elderly. In such settings, there is po-

tentially a huge risk to make a type M error, even with large sample sizes. While

they are more involved than a retrospective analysis, simulating the research de-

sign researchers want to implement is the best way to assess if it could suffer from
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statistical power issues. Our simulation codes in the replication material provide

researchers a template to run such prospective analysis.

On top of these specific warnings, we think that the literature would benefit from

reforming editors and researchers’ attitude towards statistically insignificant results

(Ziliak and McCloskey 2008a, Wasserstein and Lazar 2016, McShane et al. 2019).

The null hypothesis testing framework remains very strong in the field, especially

for causal inference papers since nearly all of them dichotomize evidence using the

5% significance threshold (Greenland 2017). This statistical significance filter leads

to publication bias and is at the very heart of the inflation of statistically significant

estimates in under-powered studies (Amrhein et al. 2019, Gelman et al. 2020, Romer

2020). Even if researchers could not improve the statistical power of their studies,

the distribution of the acute health effects of air pollution could therefore be more

accurate if statistically insignificant results were not kept in the file drawer.

Finally, our results show that a credible identification strategy does not neces-

sarily lead to a correct estimation of the actual true effect (Young 2019). Published

results are not carved in marble: when researchers qualify estimates as "statistically

significant", there is often much more uncertainty lying behind, an uncertainty that

should be computed and embraced to better help policy-makers evaluate the ad-

verse effects of air pollution. Retrospective and prospective analyses can push the

literature forward.
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